Skip to main content
Log in

MR imaging of glioblastoma in children: usefulness of diffusion/perfusion-weighted MRI and MR spectroscopy

Pediatric Radiology Aims and scope Submit manuscript

Abstract

Background

Glioblastoma is relatively uncommon in childhood and maybe difficult to differentiate from other brain tumors such as primitive neuroectodermal tumor, ependymoma, or benign astrocytoma.

Objective

To describe the characteristic MR features in children with glioblastoma and to evaluate the usefulness of diffusion and perfusion MR imaging and MR spectroscopy in pediatric glioblastoma.

Materials and methods

MR imaging in 11 children (12 tumors) with biopsy-proven glioblastoma was reviewed retrospectively. In one patient, there was a recurrent glioblastoma. We reviewed CT and MRI imaging for tumor location, density/signal intensity, and enhancement pattern. Routine MR imaging was performed with a 1.5-T scanner. In six patients, diffusion-weighted MR images (DWIs) were obtained with a single-shot spin echo EPI technique with two gradient steps, and apparent diffusion coefficients (ADCs) were calculated. Using the gradient EPI technique, perfusion-weighted MR images (PWIs) were obtained in four patients from the data of dynamic MR images. The maximum relative cerebral blood volume (rCBV) ratio was calculated between the tumor and contralateral white matter in two cases. In three patients, proton MR spectroscopy was performed using a single voxel technique with either STEAM or PRESS sequences. The locations of the tumor were the thalamus and basal ganglia (n=8), deep white matter (n=3), and brain stem (n=1).

Results

Intratumoral hemorrhage was seen in four tumors. The tumors showed high-signal intensity or DWIs, having a wide range of ADC values of 0.53–1.30 (mean ±SD=1.011±0.29). The maximum rCBV ratios of glioblastoma were 10.2 and 8.5 in two cases. MR spectroscopy showed decreased N-acetylaspartate (NAA) and increased choline in three cases. The MR findings of glioblastoma in children were: a diffusely infiltrative mass with hemorrhage involving the deep cerebral white matter, thalami, and basal ganglia.

Conclusion

Diffusion/perfusion MR imaging and MR spectroscopy are very helpful in diagnosing glioblastoma, determining the biopsy site, and evaluating tumor recurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1a–d.
Fig. 2a–d.
Fig. 3a–d.
Fig. 4a–d.

References

  1. Raco A, Bristot R, Salvati M, et al (1997) Malignant supratentorial astrocytomas of late childhood. Our experience with 25 cases. Childs Nerv Syst 13:341–344

    Article  CAS  PubMed  Google Scholar 

  2. Artico M, Luigi Cervoni L, Celli P, et al (1993) Supratentorial glioblastoma in children: a series of 27 surgically treated cases. Childs Nerv Syst 9:7–9

    CAS  PubMed  Google Scholar 

  3. Shin JH, Lee HK, Kwun BD, et al (2002) Using relative cerebral blood flow and volume to evaluate the histologic grade of cerebral gliomas: preliminary results. AJR 179:783–789

    Google Scholar 

  4. Knopp EA, Cha S, Johnson G, et al (1999) Glial neoplasms dynamic contrast-enhanced T2-weighted MR imaging. Radiology 211:791–798

    CAS  PubMed  Google Scholar 

  5. Sugahara T, Korogi Y, Kochi M, et al (1998) Correlation of MR imaging-determined cerebral blood volume maps with histologic and angiographic determination of vascularity of gliomas. AJR 171:1479–1486

    CAS  Google Scholar 

  6. Ricci PE, Pitt A, Keller PJ, et al (2000) Effect of voxel position in single-voxel MR spectroscopy findings. AJNR 21:367–374

    CAS  Google Scholar 

  7. Kaminogo M, Ishimaru H, Morikawa M, et al (2001) Diagnostic potential of short echo time MR spectroscopy of glioma with single-voxel and point-resolved spatial localized proton spectroscopy of brain. Neuroradiology 43:353–363

    Article  CAS  PubMed  Google Scholar 

  8. Girard N, Wang ZJ, Erbetta A, et al (1998) Prognostic value of proton MR spectroscopy of cerebral hemisphere tumors in children. Neuroradiology 40:121–125

    Article  CAS  PubMed  Google Scholar 

  9. Krabbe K, Gideon P, Wagn P, et al (1997) MR diffusion imaging of human intracranial tumors. Neuroradiology 39:483–489

    Article  CAS  PubMed  Google Scholar 

  10. Stadnik TW, Chaskis C, Michotte A, et al M (2001) Diffusion-weighted MR imaging of intracerebral masses: comparison with conventional MR imaging and histologic findings. AJNR 22:969–976

    CAS  Google Scholar 

  11. Tien RD, Felsberg GJ, Friedman H, et al (1994) MR imaging of high-grade cerebral gliomas: value of diffusion-weighted echoplanar pulse sequences. AJR 162:671–677

    CAS  PubMed  Google Scholar 

  12. Noguchi K, Watanabe N, Nagayoshi T, et al (1999) Role of diffusion-weighted echo-planar MRI in distinguishing between brain abscess and tumor: a preliminary report. Neuroradiology 41:171–174

    CAS  PubMed  Google Scholar 

  13. Peterman SB, Steiner RE, Bydder GM (1984) Magnetic resonance imaging of intracranial tumors in children and adolescents. AJNR 5:703–709

    CAS  Google Scholar 

  14. Higano S, Takahashi S, Kurihara N, et al (1997) Supratentorial primary intra-axial tumors in children. Acta Radiol 38:945–952

    CAS  PubMed  Google Scholar 

  15. Kelly P (1987) Computer-associated stereotaxic laser microsurgery. In: Apuzz LMJ (ed) Surgery of the third ventricle. Williams & Wilkins, Baltimore

  16. Beks JW, Bouma GJ, Journee HL (1987) Tumors of the thalamic region. A retrospective study of 27 cases. Acta Neurochir (Wien) 85:125–127

    Google Scholar 

  17. Krouwer HG, Prados MD (1995) Infiltrative astrocytomas of the thalamus. J Neurosurg 82:548–557

    CAS  PubMed  Google Scholar 

  18. Sugahara T, Korogi Y, Kochi M, et al (1999) Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of celluarity in gliomas. J Magn Reson Imaging 9:53–60

    CAS  PubMed  Google Scholar 

  19. Le Bihan D, Breton E, Lallemand D, et al (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurological disorders. Radiology 161:401–407

    PubMed  Google Scholar 

  20. Brunberg JA, Chenevert TL, McKeever PE, et al (1995) In vivo MR determination of water diffusion coefficients and diffusion anisotropy: correlation with structural alteration in gliomas of the cerebral hemispheres. AJNR 16:361–371

    CAS  PubMed  Google Scholar 

  21. Chien D, Buxton BR, Kwong KK, et al (1990) MR diffusion imaging of the human brain. J Comput Assist Tomogr 14:514–520

    CAS  PubMed  Google Scholar 

  22. Kono K, Inoue Y, Nakayama K, et al (2001) The role of diffusion-weighted imaging in patients with brain tumors. AJNR 22:1081–1088

    CAS  Google Scholar 

  23. Tsuchiya K, Katase S, Yoshino A, et al (1999) Diffusion-weighted MR imaging of encephalitis. AJR 173:1097–1099

    CAS  PubMed  Google Scholar 

  24. Petrella JR, Provenzale JM (2000) MR perfusion imaging of the brain: techniques and applications. AJR 175:207–219

    CAS  Google Scholar 

  25. Grossman RI, Wolf G, Biery D, et al (1984) Gadolinium enhancement nuclear magnetic resonance images of experimental brain abscess. J Comput Assist Tomogr 8:204–207

    CAS  PubMed  Google Scholar 

  26. Scatliff JH, Radcliffe WB, Pittman HH, et al (1969) Vascular structure of glioblastoma. Am J Roentgenol Radium Ther Nucl Med 105:795–805

    CAS  PubMed  Google Scholar 

  27. Bruhn H, Frahm J, Gyngell ML, et al (1989) Noninvasive differentiation of tumors with use of localized H-1 MR spectroscopy in vivo: initial experience in patients with cerebral tumors. Radiology 172:541–548

    CAS  PubMed  Google Scholar 

  28. Ott D, Hennig J, Ernst T (1993) Human brain tumors: assessment with in vivo proton MR spectroscopy. Radiology 186:745–752

    CAS  PubMed  Google Scholar 

  29. Poptani H, Gupta RK, Roy R, et al (1995) Characterization of intracranial mass lesions with in vivo proton MR spectroscopy. AJNR 16:1593–1603

    CAS  PubMed  Google Scholar 

  30. Castillo M, Kwock L, Mukherji SK (1996) Clinical applications of proton MR spectroscopy. AJNR 17:1–15

    CAS  Google Scholar 

  31. Tien RD, Lai PH, Smith JS, et al (1996) Single-voxel proton brain spectroscopy exam (PROBE/SV) in patients with primary brain tumors. AJR 167:201–209

    CAS  PubMed  Google Scholar 

  32. Shimizu H, Kumabe T, Tominaga T, et al (1996) Noninvasive evaluation of malignancy of brain tumors with proton MR spectroscopy. AJNR 17:737–747

    CAS  Google Scholar 

  33. Fulham MJ, Bizzi A, Dietz MJ, et al (1992) Mapping of brain tumor metabolites with proton MR spectroscopic imaging: clinical relevance. Radiology 185:675–686

    CAS  PubMed  Google Scholar 

  34. Sutton LN, Wang Z, Gusnard D, et al (1992) Proton magnetic resonance spectroscopy of pediatric brain tumors. Neurosurgery 31:195–202

    CAS  PubMed  Google Scholar 

  35. van der Knaap MS, van der Grond J, van Rijen PC, et al (1990) Age-dependent changes in localized proton and phosphorus MR spectroscopy of the brain. Radiology 176:509–515

    PubMed  Google Scholar 

  36. Meyerand ME, Pipas JM, Mamourian A, et al (1999) Classification of biopsy-confirmed brain tumors using single-voxel MR spectroscopy. AJNR 20:117–123

    CAS  PubMed  Google Scholar 

  37. Campeay NG, Wood CP, Erickson BJ, et al (1998) Effects of a stereotactoc head frame assembly on proton magnetic resonance spectroscopy. Stereotact Funct Neurosurg 71:190–202

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Min Cho.

Additional information

This paper was presented as a scientific contribution at the 39th Annual Congress of the European Society of Paediatric Radiology, Bergen, Norway, June 2002

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, YW., Yoon, HK., Shin, HJ. et al. MR imaging of glioblastoma in children: usefulness of diffusion/perfusion-weighted MRI and MR spectroscopy. Pediatr Radiol 33, 836–842 (2003). https://doi.org/10.1007/s00247-003-0968-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-003-0968-8

Keywords

Navigation