Skip to main content
Log in

New advances in fetal MR neuroimaging

  • Minisymposium
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

MR is now routinely and widely used in fetal neuroimaging and has proven to be valuable in the detection of many cerebral lesions, either genetically determined or acquired in utero. However, its efficiency has certain limits in the detection of diffuse white-matter abnormalities, the evaluation of fibre development and the demonstration of metabolic disorders. Moreover, conventional fetal MR imaging provides only a morphological approach to the fetal brain. New techniques such as diffusion-weighted imaging, diffusion tensor imaging, proton MR spectroscopy and functional MR imaging are developing. The majority of these are not used routinely. The principles, aims, technical problems and possible applications of these techniques for imaging the fetus are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Garel C (2004) Development of the fetal brain. In: Garel C (ed) MRI of the fetal brain. Normal development and cerebral pathologies. Springer, Berlin Heidelberg New York, pp 5–130

    Google Scholar 

  2. Garel C, Chantrel E, Brisse H, et al (2001) Fetal cerebral cortex: normal gestational landmarks identified using prenatal MR imaging. AJNR 22:184–189

    PubMed  CAS  Google Scholar 

  3. Garel C, Delezoide AL, Elmaleh-Berges M, et al (2004) Contribution of fetal MR imaging in the evaluation of cerebral ischemic lesions. AJNR 25:1563–1568

    PubMed  Google Scholar 

  4. Girard N, Gire C, Sigaudy S, et al (2003) MR imaging of acquired fetal brain disorders. Childs Nerv Syst 19:490–500

    Article  PubMed  Google Scholar 

  5. Brunel H, Girard N, Confort-Gouny S, et al (2004) Fetal brain injury. J Neuroradiol 31:123–137

    Article  PubMed  CAS  Google Scholar 

  6. Hüppi PS, Maier SE, Peled S, et al (1998) Microstructural development of human newborn cerebral white matter assessed in vivo by diffusion tensor magnetic resonance imaging. Pediatr Res 44:584–590

    Article  PubMed  Google Scholar 

  7. Prayer D, Prayer L (2003) Diffusion-weighted magnetic resonance imaging of cerebral white matter development. Eur J Radiol 45:235–243

    Article  PubMed  Google Scholar 

  8. Miller SP, Vigneron DB, Henry RG, et al (2002) Serial quantitative diffusion tensor MRI of the premature brain: development in newborns with and without injury. J Magn Reson Imaging 16:621–632

    Article  PubMed  Google Scholar 

  9. Bydder GM, Rutherford MA, Cowan FM (2001) Diffusion-weighted imaging in neonates. Childs Nerv Syst 17:190–194

    Article  PubMed  CAS  Google Scholar 

  10. Neil JJ, Shiran SI, McKinstry RC, et al (1998) Normal brain in human newborns: apparent diffusion coefficient and diffusion anisotropy measured by using diffusion tensor MR imaging. Radiology 209:57–66

    PubMed  CAS  Google Scholar 

  11. Righini A, Bianchini E, Parazzini C, et al (2003) Apparent diffusion coefficient determination in normal fetal brain: a prenatal MR imaging study. AJNR 24:799–804

    PubMed  Google Scholar 

  12. Bui T, Daire Jl, Alberti C, et al (2003) Microstructural development of fetal brain assessed in utero by diffusion tensor imaging. Pediatr Radiol 33:S26

    Google Scholar 

  13. Baud O, Daire JL, Dalmaz Y, et al (2004) Gestational hypoxia induces white matter damage in neonatal rats: a new model of periventricular leukomalacia. Brain Pathol 14:1–10

    Article  PubMed  Google Scholar 

  14. Heerschap A, Kok RD, van den Berg PP (2003) Antenatal proton MR spectroscopy of the human brain in vivo. Childs Nerv Syst 19:418–421

    Article  PubMed  Google Scholar 

  15. Fenton BW, Lin CS, Macedonia C, et al (2001) The fetus at term: in utero volume-selected proton MR spectroscopy with a breath-hold technique—a feasibility study. Radiology 219:563–566

    PubMed  CAS  Google Scholar 

  16. Kok RD, van den Berg AJ, Heerschap A, et al (2001) Metabolic information from the human fetal brain obtained with proton magnetic resonance spectroscopy. Am J Obstet Gynecol 185:1011–1015

    Article  PubMed  CAS  Google Scholar 

  17. Roelants-van Rijn AM, Groenendaal F, Stoutenbeek P, et al (2004) Lactate in the foetal brain: detection and implications. Acta Paediatr 93:937–940

    Article  PubMed  Google Scholar 

  18. Kok RD, van den Berg PP, van den Berg AJ, et al (2002) Maturation of the human fetal brain as observed by H MR spectroscopy. Magn Reson Med 48:611–616

    Article  PubMed  CAS  Google Scholar 

  19. Gowland P, Fulford J (2004) Initial experiences of performing fetal fMRI. Exp Neurol 190:S22–S27

    Article  PubMed  Google Scholar 

  20. Fulford J, Vadeyar SH, Dodampahala SH, et al (2004) Fetal brain activity and hemodynamic response to a vibroacoustic stimulus. Hum Brain Mapp 22:116–121

    Article  PubMed  Google Scholar 

  21. Fulford J, Vadeyar SH, Dodampahala SH, et al (2003) Fetal brain activity in response to a visual stimulus. Hum Brain Mapp 20:239–245

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Garel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garel, C. New advances in fetal MR neuroimaging. Pediatr Radiol 36, 621–625 (2006). https://doi.org/10.1007/s00247-006-0200-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-006-0200-8

Keywords

Navigation