Skip to main content
Log in

Myelination process in preterm subjects with periventricular leucomalacia assessed by magnetization transfer ratio

  • Original Article
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Background

Magnetization transfer imaging assesses the myelination status of the brain.

Objectives

To study the progress of myelination in children with periventricular leucomalacia (PVL) by measuring the magnetization transfer ratio (MTR) and to compare the MTR values with normal values.

Materials and methods

Brain MTR in 28 PVL subjects (16 males, 12 females, gestational age 30.7±2.5 weeks, corrected age 3.1±2.9 years) was measured using a 3D gradient echo sequence (TR/TE 32/8 ms, flip angle 60°, 4 mm/2 mm overlapping sections) without and with magnetization transfer prepulse and compared with normal values for preterm subjects.

Results

MTR of white-matter structures followed a monoexponential function model (y=A−B*exp(−x/C)) while the thalamus and caudate nucleus had a poor goodness of fit. MTR of the splenium of the corpus callosum reached a final value lower than normal (0.67 versus 0.70) at a younger age [t(99%) at 10.32 versus 18.90 months; P<0.05]. MTR of the normal-appearing occipital white matter and of the genu of the corpus callosum reached a normal final MTR but at a younger age than normal preterm infants [t(99%) at 8.51 versus 14.50 months and 12.51 versus 20.85 months, respectively].

Conclusion

In PVL subjects, myelination of the splenium is characterized by early arrest and deficient maturation. Accelerated myelination in unaffected white matter might suggest a compensatory process of reorganization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Volpe JJ (2001) Neurobiology of periventricular leucomalacia in the premature infant. Pediatr Res 50:553–562

    Article  PubMed  CAS  Google Scholar 

  2. Haynes RL, Baud O, Li J, et al (2005) Oxidative and nitrative injury in periventricular leukomalacia: a review. Brain Pathol 15:225–233

    Article  PubMed  CAS  Google Scholar 

  3. Blumenthal I (2004) Periventricular leucomalacia: a review. Eur J Pediatr 163:435–442

    Article  PubMed  Google Scholar 

  4. du Plessis AJ, Volpe JJ (2002) Perinatal brain injury in the preterm and term newborn. Curr Opin Neurol 15:151–157

    Article  PubMed  Google Scholar 

  5. Inder TE, Huppi PS, Warfield S, et al (1999) Periventricular white matter injury in the premature infant is followed by reduced cerebral cortical gray matter volume at term. Ann Neurol 46:755–760

    Article  PubMed  CAS  Google Scholar 

  6. Argyropoulou MI, Xydis V, Drougia A, et al (2003) MRI measurements of the pons and cerebellum in children born preterm; associations with the severity of periventricular leukomalacia and perinatal risk factors. Neuroradiology 45:730–734

    Article  PubMed  CAS  Google Scholar 

  7. Huppi PS, Murphy B, Maier SE, et al (2001) Microstructural brain development after perinatal cerebral white matter injury assessed by diffusion tensor magnetic resonance imaging. Pediatrics 107:455–460

    Article  PubMed  CAS  Google Scholar 

  8. Counsell SJ, Allsop JM, Harrison MC, et al (2003) Diffusion-weighted imaging of the brain in preterm infants with focal and diffuse white matter abnormality. Pediatrics 112:1–7

    Article  PubMed  Google Scholar 

  9. Thomas B, Eyssen M, Peeters R, et al (2005) Quantitative diffusion tensor imaging in cerebral palsy due to periventricular white matter injury. Brain 128:2562–2577

    Article  PubMed  Google Scholar 

  10. Wolff SD, Balaban RS (1994) Magnetization transfer imaging: practical aspects and clinical applications. Radiology 192:593–599

    PubMed  CAS  Google Scholar 

  11. Grossman RI, Gomori JM, Ramer KN, et al (1994) Magnetization transfer: theory and clinical applications in neuroradiology. Radiographics 14:279–290

    PubMed  CAS  Google Scholar 

  12. Mehta RC, Pike GB, Enzmann DR (1995) Magnetization transfer MR of the normal adult brain. AJNR 16:2085–2091

    PubMed  CAS  Google Scholar 

  13. Engelbrecht V, Rassek M, Preiss S, et al (1998) Age-dependent changes in magnetization transfer contrast of white matter in the pediatric brain. AJNR 19:1923–1929

    PubMed  CAS  Google Scholar 

  14. van Buchem MA, Steens SC, Vrooman HA, et al (2001) Global estimation of myelination in the developing brain on the basis of magnetization transfer imaging: a preliminary study. AJNR 22:762–766

    PubMed  Google Scholar 

  15. Xydis V, Astrakas L, Zikou A, et al (2006) Magnetization transfer ratio in the brain of preterm subjects: age-related changes during the first 2 years of life. Eur Radiol 16:215–220

    Article  PubMed  Google Scholar 

  16. Flodmark O, Lupton B, Li D, et al (1989) MR imaging of periventricular leukomalacia in childhood. AJR 152:583–590

    PubMed  CAS  Google Scholar 

  17. Papile LA, Burstein J, Burstein R, et al (1978) Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1500 gm. J Pediatr 92:529–534

    Article  PubMed  CAS  Google Scholar 

  18. Stanisz GJ, Kecojevic A, Bronskill MJ, et al (1999) Characterizing white matter with magnetization transfer and T(2). Magn Reson Med 42:1128–1136

    Article  PubMed  CAS  Google Scholar 

  19. Northington FJ, Ferriero DM, Flock DL, et al (2001) Delayed neurodegeneration in neonatal rat thalamus after hypoxia-ischemia is apoptosis. J Neurosci 21:1931–1938

    PubMed  CAS  Google Scholar 

  20. Puka-Sundvall M, Wallin C, Gilland E, et al (2000) Impairment of mitochondrial respiration after cerebral hypoxia-ischemia in immature rats: relationship to activation of caspase-3 and neuronal injury. Brain Res Dev Brain Res 125:43–50

    Article  PubMed  CAS  Google Scholar 

  21. Lin Y, Okumura A, Hayakawa F, et al (2001) Quantitative evaluation of thalami and basal ganglia in infants with periventricular leukomalacia. Dev Med Child Neurol 43:481–485

    Article  PubMed  CAS  Google Scholar 

  22. Yokochi K (1997) Thalamic lesions revealed by MR associated with periventricular leukomalacia and clinical profiles of subjects. Acta Paediatr 86:493–496

    Article  PubMed  CAS  Google Scholar 

  23. Pierpaoli C, Barnett A, Pajevic S, et al (2001) Water diffusion changes in Wallerian degeneration and their dependence on white matter architecture. Neuroimage 13:1174–1185

    Article  PubMed  CAS  Google Scholar 

  24. Parent A, Sato F, Wu Y, et al (2000) Organization of the basal ganglia: the importance of axonal collateralization. Trends Neurosci 23:S20–S27

    Article  PubMed  CAS  Google Scholar 

  25. Yakovlev PI, Lecours AR (1967) The myelogenetic cycles of regional maturation of the brain. In: Minkowski A (ed) Regional development of the brain in early life. Blackwell, Oxford, pp 3–70

    Google Scholar 

  26. Kinney HC, Brody BA, Kloman AS, et al (1988) Sequence of central nervous system myelination in human infancy. J Neuropathol Exp Neurol 47:217–234

    Article  PubMed  CAS  Google Scholar 

  27. Barkovich AJ, Lyon G, Evrard P (1992) Formation, maturation, and disorders of white matter. AJNR 13:447–461

    PubMed  CAS  Google Scholar 

  28. Fedrizzi E, Inverno M, Bruzzone MG, et al (1996) MRI features of cerebral lesions and cognitive functions in preterm spastic diplegic children. Pediatr Neurol 15:207–212

    Article  PubMed  CAS  Google Scholar 

  29. Hoon AH Jr, Lawrie WT Jr, Melhem ER, et al (2002) Diffusion tensor imaging of periventricular leukomalacia shows affected sensory cortex white matter pathways. Neurology 59:752–756

    PubMed  Google Scholar 

  30. Nagy Z, Westerberg H, Skare S, et al (2003) Preterm children have disturbances of white matter at 11 years of age as shown by diffusion tensor imaging. Pediatr Res 54:672–679

    Article  PubMed  Google Scholar 

  31. Johnston MV (2004) Clinical disorders of brain plasticity. Brain Dev 26:73–80

    Article  PubMed  Google Scholar 

  32. Fields RD (2005) Myelination: an overlooked mechanism of synaptic plasticity? Neuroscientist 11:528–531

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Argyropoulou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xydis, V., Astrakas, L., Drougia, A. et al. Myelination process in preterm subjects with periventricular leucomalacia assessed by magnetization transfer ratio. Pediatr Radiol 36, 934–939 (2006). https://doi.org/10.1007/s00247-006-0235-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-006-0235-x

Keywords

Navigation