Skip to main content

Advertisement

Log in

Magnetoencephalography

  • Minisymposium
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Although magnetoencephalography (MEG) may not be familiar to many pediatric radiologists, it is an increasingly available neuroimaging technique both for evaluating normal and abnormal intracranial neural activity and for functional mapping. By providing spatial, temporal, and time-frequency spectral information, MEG affords patients with epilepsy, intracranial neoplasia, and vascular malformations an opportunity for a sensitive and accurate non-invasive preoperative evaluation. This technique can optimize selection of surgical candidates as well as increase confidence in preoperative counseling and prognosis. Research applications that appear promising for near-future clinical translation include the evaluation of children with autism spectrum disorder, traumatic brain injury, and schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lee D, Sawrie SM, Simos PG et al (2006) Reliability of language mapping with magnetic source imaging in epilepsy surgery candidates. Epilepsy Behav 8:742–749

    Article  PubMed  Google Scholar 

  2. Knowlton RC, Elgavish R, Howell J et al (2006) Magnetic source imaging versus intracranial electroencephalogram in epilepsy surgery: a prospective study. Ann Neurol 59:835–842

    Article  PubMed  Google Scholar 

  3. Knowlton RC, Razdan SN, Limdi N et al (2009) Effect of epilepsy magnetic source imaging on intracranial electrode placement. Ann Neurol 65:716–723

    Article  PubMed  Google Scholar 

  4. Nakasato N, Yoshimoto T (2000) Somatosensory, auditory, and visual evoked magnetic fields in patients with brain diseases. J Clin Neurophysiol 17:201–211

    Article  CAS  PubMed  Google Scholar 

  5. Alberstone CD, Skirboll SL, Benzel EC et al (2000) Magnetic source imaging and brain surgery: presurgical and intraoperative planning in 26 patients. J Neurosurg 92:79–90

    Article  CAS  PubMed  Google Scholar 

  6. Schiffbauer H, Berger MS, Ferrari P et al (2002) Preoperative magnetic source imaging for brain tumor surgery: a quantitative comparison with intraoperative sensory and motor mapping. J Neurosurg 97:1333–1342

    Article  PubMed  Google Scholar 

  7. Gaetz W, Cheyne D, Rutka JT et al (2009) Presurgical localization of primary motor cortex in pediatric patients with brain lesions by the use of spatially filtered magnetoencephalography. Neurosurgery 64:177–185 discussion 186

    Article  PubMed  Google Scholar 

  8. Lewine JD, Orrison WW Jr (1995) Spike and slow wave localization by magnetoencephalography. Neuroimaging Clin N Am 5:575–596

    CAS  PubMed  Google Scholar 

  9. Okada YC, Wu J, Kyuhou S (1997) Genesis of MEG signals in a mammalian CNS structure. Electroencephalogr Clin Neurophysiol 103:474–485

    Article  CAS  PubMed  Google Scholar 

  10. Williamson JS, Kaufman L (1990) Auditory evoked magnetic fields and electric potentials—theory of neuromagnetic fields. In: Grandori F, Hoke M, Romani GL (eds) Advances in Audiology. Karger, Basel, pp 1–39

    Google Scholar 

  11. Okada Y, Pratt K, Atwood C et al (2006) BabySQUID: a mobile, high-resolution multichannel magnetoencephalography system for neonatal brain assessment. Rev Sci Instrum77, 024301. doi:10.1063/1.2168672

  12. Okada Y, Lahteenmaki A, Xu C (1999) Comparison of MEG and EEG on the basis of somatic evoked responses elicited by stimulation of the snout in the juvenile swine. Clin Neurophysiol 110:214–229

    Article  CAS  PubMed  Google Scholar 

  13. Okada YC, Lahteenmaki A, Xu C (1999) Experimental analysis of distortion of magnetoencephalography signals by the skull. Clin Neurophysiol 110:230–238

    Article  CAS  PubMed  Google Scholar 

  14. Moses SN, Ryan JD, Bardouille T et al (2009) Semantic information alters neural activation during transverse patterning performance. Neuroimage 46:863–873

    Article  PubMed  Google Scholar 

  15. Cornwell BR, Johnson LL, Holroyd T et al (2008) Human hippocampal and parahippocampal theta during goal-directed spatial navigation predicts performance on a virtual Morris water maze. J Neurosci 28:5983–5990

    Article  CAS  PubMed  Google Scholar 

  16. Luo Q, Mitchell D, Cheng X et al (2009) Visual awareness, emotion, and gamma band synchronization. Cereb Cortex 19:1896–1904

    Article  PubMed  Google Scholar 

  17. Garolera M, Coppola R, Munoz KE et al (2007) Amygdala activation in affective priming: a magnetoencephalogram study. NeuroReport 18:1449–1453

    Article  PubMed  Google Scholar 

  18. Ioannides AA, Fenwick PB (2005) Imaging cerebellum activity in real time with magnetoencephalographic data. Prog Brain Res 148:139–150

    Article  PubMed  Google Scholar 

  19. Martin T, Houck JM, Bish JP et al (2006) MEG reveals different contributions of somatomotor cortex and cerebellum to simple reaction time after temporally structured cues. Hum Brain Mapp 27:552–561

    Article  PubMed  Google Scholar 

  20. Knowlton RC (2003) Magnetoencephalography: clinical application in epilepsy. Curr Neurol Neurosci Rep 3:341–348

    Article  PubMed  Google Scholar 

  21. Knowlton RC (2008) Can magnetoencephalography aid epilepsy surgery? Epilepsy Curr 8:1–5

    PubMed  Google Scholar 

  22. Rowley HA, Roberts TP (1995) Functional localization by magnetoencephalography. Neuroimaging Clin N Am 5:695–710

    CAS  PubMed  Google Scholar 

  23. Schwartz ES, Dlugos DJ, Storm PB et al (2008) Magnetoencephalography for pediatric epilepsy: how we do it. AJNR 29:832–837

    CAS  PubMed  Google Scholar 

  24. Mamelak AN, Lopez N, Akhtari M et al (2002) Magnetoencephalography-directed surgery in patients with neocortical epilepsy. J Neurosurg 97:865–873

    Article  PubMed  Google Scholar 

  25. Engel J Jr (1988) The role of neuroimaging in the surgical treatment of epilepsy. Acta Neurol Scand Suppl 117:84–89

    Article  PubMed  Google Scholar 

  26. Papanicolaou AC, Simos PG, Castillo EM et al (2004) Magnetoencephalography: a noninvasive alternative to the Wada procedure. J Neurosurg 100:867–876

    Article  PubMed  Google Scholar 

  27. Merrifield WS, Simos PG, Papanicolaou AC et al (2007) Hemispheric language dominance in magnetoencephalography: sensitivity, specificity, and data reduction techniques. Epilepsy Behav 10:120–128

    Article  PubMed  Google Scholar 

  28. Cheyne D, Bostan AC, Gaetz W et al (2007) Event-related beamforming: a robust method for presurgical functional mapping using MEG. Clin Neurophysiol 118:1691–1704

    Article  PubMed  Google Scholar 

  29. Scherg M, Berg P (1996) New concepts of brain source imaging and localization. Electroencephalogr Clin Neurophysiol Suppl 46:127–137

    CAS  PubMed  Google Scholar 

  30. Robinson SE, Nagarajan SS, Mantle M et al (2004) Localization of interictal spikes using SAM(g2) and dipole fit. Neurol Clin Neurophysiol 2004:74

    CAS  PubMed  Google Scholar 

  31. Okada YC, Tanenbaum R, Williamson SJ et al (1984) Somatotopic organization of the human somatosensory cortex revealed by neuromagnetic measurements. Exp Brain Res 56:197–205

    Article  CAS  PubMed  Google Scholar 

  32. Wood CC, Cohen D, Cuffin BN et al (1985) Electrical sources in human somatosensory cortex: identification by combined magnetic and potential recordings. Science 227:1051–1053

    Article  CAS  PubMed  Google Scholar 

  33. Romani GL, Rossini P (1988) Neuromagnetic functional localization: principles, state of the art, and perspectives. Brain Topogr 1:5–21

    Article  CAS  PubMed  Google Scholar 

  34. Allison T, McCarthy G, Wood CC et al (1991) Potentials evoked in human and monkey cerebral cortex by stimulation of the median nerve. A review of scalp and intracranial recordings. Brain 114(Pt 6):2465–2503

    Article  PubMed  Google Scholar 

  35. Hari R, Kaukoranta E (1985) Neuromagnetic studies of somatosensory system: principles and examples. Prog Neurobiol 24:233–256

    Article  CAS  PubMed  Google Scholar 

  36. Sobel DF, Gallen CC, Schwartz BJ et al (1993) Locating the central sulcus: comparison of MR anatomic and magnetoencephalographic functional methods. AJNR 14:915–925

    CAS  PubMed  Google Scholar 

  37. Roberts TP, Zusman E, McDermott M et al (1995) Correlation of functional magnetic source imaging with intraoperative cortical stimulation in neurosurgical patients. J Image Guid Surg 1:339–347

    Article  CAS  PubMed  Google Scholar 

  38. Schiffbauer H, Berger MS, Ferrari P et al (2003) Preoperative magnetic source imaging for brain tumor surgery: a quantitative comparison with intraoperative sensory and motor mapping. Neurosurg Focus 15:E7

    Article  PubMed  Google Scholar 

  39. Roberts TP, Ferrari P, Perry D et al (2000) Presurgical mapping with magnetic source imaging: comparisons with intraoperative findings. Brain Tumor Pathol 17:57–64

    Article  CAS  PubMed  Google Scholar 

  40. Deecke L (1978) Dissociations between performance (time of movement onset) and slow potentials (Bereitschaftspotential and CNV). Electroencephalogr Clin Neurophysiol Suppl 34:225–229

    PubMed  Google Scholar 

  41. Cheyne D, Bakhtazad L, Gaetz W (2006) Spatiotemporal mapping of cortical activity accompanying voluntary movements using an event-related beamforming approach. Hum Brain Mapp 27:213–229

    Article  PubMed  Google Scholar 

  42. Lemon R (1979) Short-latency peripheral inputs to the motor cortex in conscious monkeys. Brain Res 161:150–155

    Article  CAS  PubMed  Google Scholar 

  43. Gaetz W, Otsubo H, Pang EW (2008) Magnetoencephalography for clinical pediatrics: the effect of head positioning on measurement of somatosensory-evoked fields. Clin Neurophysiol 119:1923–1933

    Article  CAS  PubMed  Google Scholar 

  44. Robinson SE, Vrba J (1999) Functional neuroimaging by synthetic aperture magnetometry. In: Nenonen J, Ilmoniemi RJ, Katila T (eds) Biomag 2000: Proc of the 12th Int Conf Biomag. Helsinki University of Technology, Espoo, pp 302–305

    Google Scholar 

  45. Wada J, Rasmussen T (1960) Intracarotid injection of sodium amytal for the lateralization of cerebral speech dominance. J Neurosurg 106:1117–1133

    Google Scholar 

  46. Papanicolaou AC, Simos PG, Breier JI et al (1999) Magnetoencephalographic mapping of the language-specific cortex. J Neurosurg 90:85–93

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been funded, in part, by a grant from the Pennsylvania Department of Health. The Pennsylvania Department of Health specifically disclaims responsibility for any analyses, interpretations, or conclusions. Dr. Roberts gratefully acknowledges the Oberkircher Family for the Oberkircher Family Chair in Pediatric Radiology at the Children’s Hospital of Philadelphia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erin Simon Schwartz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwartz, E.S., Edgar, J.C., Gaetz, W.C. et al. Magnetoencephalography. Pediatr Radiol 40, 50–58 (2010). https://doi.org/10.1007/s00247-009-1451-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-009-1451-y

Keywords

Navigation