Skip to main content
Log in

Comparison of 18F-dopa PET/CT and 123I-MIBG scintigraphy in stage 3 and 4 neuroblastoma: a pilot study

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

18F-Dopa positron emission tomography (PET)/CT has proved a valuable tool for the assessment of neuroendocrine tumours. So far no data are available on 18F-dopa utilization in neuroblastoma (NB). Our aim was to evaluate the role of 18F-dopa PET/CT in NB and compare its diagnostic value with that of 123I-metaiodobenzylguanidine (MIBG) scintigraphy in patients affected by stage 3–4 NB.

Methods

We prospectively evaluated 28 paired 123I-MIBG and 18F-dopa PET/CT scans in 19 patients: 4 at the time of the NB diagnosis and 15 when NB relapse was suspected. For both imaging modalities we performed a scan-based and a lesion-based analysis and calculated sensitivity, specificity and accuracy. The standard of reference was based on clinical, imaging and histological data.

Results

NB localizations were confirmed in 17 of 19 patients. 18F-Dopa PET/CT and 123I-MIBG scintigraphy properly detected disease in 16 (94%) and 11 (65%), respectively. On scan-based analysis, 18F-dopa PET/CT showed a sensitivity and accuracy of 95 and 96%, respectively, while 123I-MIBG scanning showed a sensitivity and accuracy of 68 and 64%, respectively (p < 0.05). No significant difference in terms of specificity was found. In 9 of 28 paired scans (32%) PET/CT results influenced the patient management. We identified 156 NB localizations, 141 of which were correctly detected by 18F-dopa PET/CT and 88 by MIBG. On lesion-based analysis, 18F-dopa PET/CT showed a sensitivity and accuracy of 90% whereas 123I-MIBG scintigraphy showed a sensitivity and accuracy of 56 and 57%, respectively (p < 0.001). No significant difference in terms of specificity was found.

Conclusion

In our NB population 18F-dopa PET/CT displayed higher overall accuracy than 123I-MIBG scintigraphy. Consequently, we suggest 18F-dopa PET/CT as a new opportunity for NB assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Matthay KK, Villablanca JG, Seeger RC, Stram DO, Harris RE, Ramsay NK, et al. Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis-retinoic acid: Children’s Cancer Group. N Engl J Med 1999;341:1165–73.

    Article  PubMed  CAS  Google Scholar 

  2. Braduer GM, Pritchard J, Berthold F, Carlsen NL, Castel V, Castelberry RP, et al. Revisions of the international criteria for neuroblastoma diagnosis, staging, and response to treatment. J Clin Oncol 1993;11:1466–77.

    Google Scholar 

  3. Vaidyanathan G. Meta-iodobenzylguanidine and analogues: chemistry and biology. Q J Nucl Med Mol Imaging 2008;52:351–68.

    PubMed  CAS  Google Scholar 

  4. Monclair T, Brodeur GM, Ambros PF, Brisse HJ, Cecchetto G, Holmes K, et al. The International Neuroblastoma Risk Group (INRG) staging system: an INRG Task Force report. J Clin Oncol 2009;27:298–303.

    Article  PubMed  Google Scholar 

  5. Shulkin BL, Hutchinson RJ, Castle VP, Yanik GA, Shapiro B, Sisson JC. Neuroblastoma: positron emission tomography with 2-[fluorine-18]-fluoro-2-deoxy-D-glucose compared with metaiodobenzylguanidine scintigraphy. Radiology 1996;199:743–50.

    PubMed  CAS  Google Scholar 

  6. Kushner BH, Yeung HW, Larson SM, Kramer K, Cheung NK. Extending positron emission tomography scan utility to high-risk neuroblastoma: fluorine-18 fluorodeoxyglucose positron emission tomography as sole imaging modality in follow-up of patients. J Clin Oncol 2001;19:3397–405.

    PubMed  CAS  Google Scholar 

  7. Kushner BH. Neuroblastoma: a disease requiring a multitude of imaging studies. J Nucl Med 2004;45:1172–88.

    PubMed  Google Scholar 

  8. Taggart DR, Han MM, Quach A, Groshen S, Ye W, Villablanca JG, et al. Comparison of iodine-123 metaiodobenzylguanidine (MIBG) scan and [18F]fluorodeoxyglucose positron emission tomography to evaluate response after iodine-131 MIBG therapy for relapsed neuroblastoma. J Clin Oncol 2009;27:5343–9.

    Article  PubMed  CAS  Google Scholar 

  9. Sharp SE, Shulkin BL, Gelfand MJ, Salisbury S, Furman WL. 123I-MIBG scintigraphy and 18F-FDG PET in neuroblastoma. J Nucl Med 2009;50:1237–43.

    Article  PubMed  Google Scholar 

  10. Minn H, Kauhanen S, Seppänen M, Nuutila P. 18F-FDOPA: a multiple-target molecule. J Nucl Med 2009;50(12):1915–8.

    Article  PubMed  CAS  Google Scholar 

  11. Fottner C, Helisch A, Anlauf M, Rossmann H, Musholt TJ, Kreft A, et al. 6-18F-fluoro-L-dihydroxyphenylalanine positron emission tomography is superior to 123I-metaiodobenzyl-guanidine scintigraphy in the detection of extraadrenal and hereditary pheochromocytomas and paragangliomas: correlation with vesicular monoamine transporter expression. J Clin Endocrinol Metab 2010;95(6):2800–10.

    Article  PubMed  CAS  Google Scholar 

  12. Timmers HJ, Chen CC, Carrasquillo JA, Whatley M, Ling A, Havekes B, et al. Comparison of 18F-fluoro-L-DOPA, 18F-fluoro-deoxyglucose, and 18F-fluorodopamine PET and 123I-MIBG scintigraphy in the localization of pheochromocytoma and paraganglioma. J Clin Endocrinol Metab 2009;94(12):4757–67.

    Article  PubMed  CAS  Google Scholar 

  13. Hoegerle S, Altehoefer C, Ghanem N, Koehler G, Waller CF, Scheruebl H, et al. Whole-body 18F dopa PET for detection of gastrointestinal carcinoid tumors. Radiology 2001;220:373–80.

    PubMed  CAS  Google Scholar 

  14. Hoegerle S, Altehoefer C, Ghanem N, Brink I, Moser E, Nitzsche E. 18F-DOPA positron emission tomography for tumour detection in patients with medullary thyroid carcinoma and elevated calcitonin levels. Eur J Nucl Med 2001;28:64–71.

    Article  PubMed  CAS  Google Scholar 

  15. Hoegerle S, Nitzsche E, Altehoefer C, Ghanem N, Manz T, Brink I, et al. Pheochromocytomas: detection with 18F-DOPA whole body PET—initial results. Radiology 2002;222:507–12.

    Article  PubMed  Google Scholar 

  16. Fiebrich HB, Brouwers AH, Kerstens MN, Pijl ME, Kema IP, de Jong JR, et al. 6-[F-18]Fluoro-L-dihydroxyphenylalanine positron emission tomography is superior to conventional imaging with (123)I-metaiodobenzylguanidine scintigraphy, computer tomography, and magnetic resonance imaging in localizing tumors causing catecholamine excess. J Clin Endocrinol Metab 2009;94(10):3922–30.

    Article  PubMed  CAS  Google Scholar 

  17. Luxen A, Perlmutter M, Bida GT, Van Moffaert G, Cook JS, Satyamurthy N, et al. Remote, semiautomated production of 6-[18F]fluoro-L-dopa for human studies with PET. Int J Rad Appl Instrum A 1990;41(3):275–81.

    Article  PubMed  CAS  Google Scholar 

  18. Messina JA, Cheng SC, Franc BL, Charron M, Shulkin B, To B, et al. Evaluation of semi-quantitative scoring system for metaiodobenzylguanidine (mIBG) scans in patients with relapsed neuroblastoma. Pediatr Blood Cancer 2006;47:865–74.

    Article  PubMed  Google Scholar 

  19. Shulkin BL, Shapiro B. Current concepts on the diagnostic use of MIBG in children. J Nucl Med 1998;39:679–88.

    PubMed  CAS  Google Scholar 

  20. Osmanagaoglu K, Lippens M, Benoit Y, Obrie E, Schelstraete K, Simons M. A comparison of iodine-123 meta-iodobenzylguanidine scintigraphy and single bone marrow aspiration biopsy in the diagnosis and follow-up of 26 children with neuroblastoma. Eur J Nucl Med 1993;20:1154–60.

    Article  PubMed  CAS  Google Scholar 

  21. Moyes JSE, Babich JW, Carter R, Meller ST, Agrawal M, McElwain TJ. Quantitative study of radioiodinated metaiodobenzylguanidine uptake in children with neuroblastoma: correlation with tumor histopathology. J Nucl Med 1989;30(4):474–80.

    PubMed  CAS  Google Scholar 

  22. Lebtahi Hadj-Djilani N, Lebtahi NE, Bischof Delaloye A, Laurini R, Beck D. Diagnosis and follow-up of neuroblastoma by means of iodine-123 metaiodobenzylguanidine scintigraphy and bone scan, and the influence of histology. Eur J Nucl Med 1995;22:322–9.

    Article  Google Scholar 

  23. Geatti O, Shapiro B, Sisson JC, Hutchinson RJ, Mallette S, Eyre P, et al. Iodine-131 metaiodobenzylguanidine scintigraphy for the location of neuroblastoma: preliminary experience in ten cases. J Nucl Med 1985;26:736–42.

    PubMed  CAS  Google Scholar 

  24. Khafagi FA, Shapiro B, Fig LM, Mallette S, Sisson JC. Labetalol reduces iodine-131 MIBG uptake by pheochromocytoma and normal tissues. J Nucl Med 1989;30:481–9.

    PubMed  CAS  Google Scholar 

  25. Biasotti S, Garaventa A, Villavecchia GP, Cabria M, Nantron M, De Bernardi B. False-negative metaiodobenzylguanidine scintigraphy at diagnosis of neuroblastoma. Med Pediatr Oncol 2000;35:153–5.

    Article  PubMed  CAS  Google Scholar 

  26. Giammarile F, Lumbroso J, Ricard M, Aubert B, Hartmann O, Schlumberger M, et al. Radioiodinated metaiodobenzylguanidine in neuroblastoma: influence of high dose on tumour site detection. Eur J Nucl Med 1995;22:1180–3.

    Article  PubMed  CAS  Google Scholar 

  27. Bonnin F, Lumbroso J, Tenenbaum F, Hartmann O, Parmentier C. Refining interpretation of MIBG scans in children. J Nucl Med 1994;35:803–10.

    PubMed  CAS  Google Scholar 

  28. Melzer HI, Coppenrath E, Schmid I, Albert MH, von Schweinitz D, Tudball C, et al. (123)I-MIBG scintigraphy/SPECT versus (18)F-FDG PET in paediatric neuroblastoma. Eur J Nucl Med Mol Imaging 2011;38:1648–58.

    Article  PubMed  Google Scholar 

  29. Garaventa A, Parodi S, De Bernardi B, Dau D, Manzitti C, Conte M, et al. Outcome of children with neuroblastoma after progression or relapse. A retrospective study of the Italian neuroblastoma registry. Eur J Cancer 2009;45:2835–42.

    Article  PubMed  Google Scholar 

  30. Vik TA, Pfluger T, Kadota R, Castel V, Tulchinsky M, Farto JC, et al. (123)I-mIBG scintigraphy in patients with known or suspected neuroblastoma: results from a prospective multicenter trial. Pediatr Blood Cancer 2009;52:784–90.

    Article  PubMed  Google Scholar 

  31. Jacobson AF, Deng H, Lombard J, Lessig HJ, Black RR. 123I-meta-iodobenzylguanidine scintigraphy for the detection of neuroblastoma and pheochromocytoma: results of a meta-analysis. J Clin Endocrinol Metab 2010;95:2596–606.

    Article  PubMed  CAS  Google Scholar 

  32. Feine U, Müller-Schauenburg W, Treuner J, Klingebiel T. Metaiodobenzylguanidine (MIBG) labeled with 123I/131I in neuroblastoma diagnosis and follow-up treatment with a review of the diagnostic results of the International Workshop of Pediatric Oncology held in Rome, September 1986. Med Pediatr Oncol 1987;15(4):181–7.

    Article  PubMed  CAS  Google Scholar 

  33. Hoefnagel CA, Voûte PA, de Kraker J, Marcuse HR. Radionuclide diagnosis and therapy of neural crest tumors using iodine-131 metaiodobenzylguanidine. J Nucl Med 1987;28:308–14.

    PubMed  CAS  Google Scholar 

  34. Okuyama C, Ushijima Y, Kubota T, Nakamura T, Kikkawa M, Nishimura T. Utility of follow-up studies using meta-[123 I]iodobenzylguanidine scintigraphy for detecting recurrent neuroblastoma. Nucl Med Commun 2002;23:663–72.

    Article  PubMed  CAS  Google Scholar 

  35. McDowell H, Losty P, Barnes N, Kokai G. Utility of FDG-PET/CT in the follow-up of neuroblastoma which became MIBG-negative. Pediatr Blood Cancer 2009;52:552.

    Article  Google Scholar 

  36. Kushner BH, Kramer K, Modak S, Cheung NK. Sensitivity of surveillance studies for detecting asymptomatic and unsuspected relapse of high-risk neuroblastoma. J Clin Oncol 2009;27:1041–6.

    Article  PubMed  Google Scholar 

  37. Colavolpe C, Guedj E, Cammilleri S, Taieb D, Mundler O, Coze C. Utility of FDG-PET/CT in the follow-up of neuroblastoma which became MIBG-negative. Pediatr Blood Cancer 2008;51:828–31.

    Article  PubMed  Google Scholar 

  38. Frappaz D, Bonneu A, Chauvot P, Edeline V, Giammarile F, Siles S, et al. Metaiodobenzylguanidine assessment of metastatic neuroblastoma: observer dependency and chemosensitivity evaluation. The SFOP Group. Med Pediatr Oncol 2000;34:237–41.

    Article  PubMed  CAS  Google Scholar 

  39. Schwarz KB, Driver I, Lewis IJ, Taylor RE. Positive MIBG scanning at the time of relapse in neuroblastoma which was MIBG negative at diagnosis. Br J Radiol 1997;70:90–2.

    PubMed  CAS  Google Scholar 

  40. Matthay KK, Shulkin B, Ladenstein R, Michon J, Giammarile F, Lewington V, et al. Criteria for evaluation of disease extent by (123)I-metaiodobenzylguanidine scans in neuroblastoma: a report for the International Neuroblastoma Risk Group (INRG) Task Force. Br J Cancer 2010;102:1319–22.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnoldo Piccardo.

Additional information

Arnoldo Piccardo and Egesta Lopci contributed equally to the paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piccardo, A., Lopci, E., Conte, M. et al. Comparison of 18F-dopa PET/CT and 123I-MIBG scintigraphy in stage 3 and 4 neuroblastoma: a pilot study. Eur J Nucl Med Mol Imaging 39, 57–71 (2012). https://doi.org/10.1007/s00259-011-1938-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-011-1938-2

Keywords

Navigation