Skip to main content
Log in

Dose Perturbation Caused by Stents: Experiments with a Model 90Sr/90Y Source

  • Laboratory Investigation
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

Purpose

Biological effects of intravascular brachytherapy are very sensitive to discrepancies between the prescription and the applied dose. If brachytherapy is aimed at in-stent restenosis, shielding and shadowing effects of metallic stents may change the dose distribution relative to that produced by the bare source. The development of new generations of stents inspired us to a new experimental study in this field. The effect was studied for 14 stents which we have recently encountered in clinical practice.

Methods

The model source was a continuous 20-mm column of 90Sr/90Y solution sealed in a 1-mm-I.D. Plexiglas capillary. The dose distribution in the Plexiglas phantom was mapped using GafChromic MD-55-2 film. The stent masses varied from 2.5 to 25 mg; the strut thicknesses, from 0.075 to 0.15 mm; and the atomic numbers of stent materials, from 24 (Cr) to 79 (Au).

Results

Dose perturbations depend on a variety of stent features. Local reduction of the mean dose rates near the reference distance (r0 = 2 mm) varied from 11% to 47%. No simple correlation was found between these data and stent characteristics, but it seems that the atomic number of the stent material is less important than the strut thickness and mesh density.

Conclusion

The results provide a warning that clinical indications for in-stent radiation therapy must always be confronted with another aspect of the patient’s history: the kind of implanted stent. Intravascular brachytherapy using pure beta sources may be recommended only for patients “wearing” light, thin-strut stents. The presence of thick-strut stents is a contraindication for this modality, due to excessive dose perturbation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Palmaz JC (1993) Intravascular stents: tissue–stent interactions and design considerations. Am J Roentgenol 160:613–618

    CAS  Google Scholar 

  2. Serruys PW, Kutryk MJB (1998) Handbook of coronary stents, 2nd ed. Martin Dunitz, London

    Google Scholar 

  3. Serruys PW, Rensing BJ (2002) Handbook of coronary stents, 4th ed. Martin Dunitz, London

    Google Scholar 

  4. Butany J, Carmichael K, Leong SW, Collins MJ (2005) Coronary artery stents: identification and evaluation. J Clin Pathol 58:795–804

    Article  PubMed  CAS  Google Scholar 

  5. http://www.cardiosource.com/clinicaltrials/index.asp

  6. Hoffmann R, Mintz GS (2000) Coronary in-stent restenosis—predictors, treatment and prevention. Eur Heart J 21:1739–1749

    Article  PubMed  CAS  Google Scholar 

  7. Radke PW, Kaiser A, Frost C, Sigwart U (2003) Outcome after treatment of coronary in-stent restenosis. Results from a systematic review using meta-analysis tehniques. Eur Heart J 24:266–273

    Article  PubMed  CAS  Google Scholar 

  8. Mani G, Feldman MD, Patel D, Agraval CM (2007) Coronary stents: a materials perspective. Biomaterials 28:1689–1710

    Article  PubMed  CAS  Google Scholar 

  9. Angiolillo DJ, Sabaté M, Jiménez-Quevedo P, et al. (2003) Intracoronary brachytherapy following drug-eluting stent failure. It’s still not time to hang up the spikes! Cardiovasc Radiat Med 4:171–175

    Article  PubMed  Google Scholar 

  10. Waksman R, Ajani AE, Lawrence White R, et al. (2004) Five-year follow-up after intracoronary gamma radiation therapy for in-stent restenosis. Circulation 109:340–344

    Article  PubMed  Google Scholar 

  11. Pokrajac B, Pötter R, Wolfram RM, et al. (2005) Endovascular brachytherapy prevents restenosis after femoropopliteal angioplasty: results of the Vienna-3 randomised multicenter study. Radiother Oncol 74:3–9

    Article  PubMed  Google Scholar 

  12. Bhargava B, Karthikeyan G, Tripuraneni P (2004) Intravascular brachytherapy. Indications and managment of adverse effects. Am J Cardiovasc Drugs 4:385–394 (also:http://www.cardiosource.com/clinicaltrials/index.asp)

    Google Scholar 

  13. Roa DE, Song H, Yue N, d’Errico F, Nath R (2002) Measured TG-60 dosimetric parameters of the Novoste Beta-Cath 90Sr/Y source trains for intravascular brachytherapy. Cardiovasc Radiat Med 3:199–204

    Article  PubMed  Google Scholar 

  14. Sabaté M, Costa MA, Kozuma K, Kay IP, van der Giessen WJ, Coen VLMA, Ligthart JMR, Serrano P, Levendag PC, Serruys PW (2000) Geographic miss. A cause of treatment failure in radio-oncology applied to intracoronary radiation therapy. Circulation 101:2467–2471

    PubMed  Google Scholar 

  15. Nath R, Amols H, Coffey Ch, et al. (1999) Intravascular brachytherapy physics: report of the AAPM Radiation Therapy Committee Task Group No. 60. Med Phys 26:119–152

    Article  PubMed  CAS  Google Scholar 

  16. Fox RA, Henson PW (1999) The effect of contrast medium and balloon shape on dosimetry for arterial irradiation with 188Re. Med Phys 26(5):771–776

    Article  PubMed  CAS  Google Scholar 

  17. Li XA, Shih R (2001) Dose effects of guide wires for catheter-based intravascular brachytherapy. Int J Radiat Oncol Biol Phys 51:1103–1110

    Article  PubMed  CAS  Google Scholar 

  18. Yue N, Roberts K, Nath R (2004) Effects of vessel curvature on dose distributions in catheter-based intravascular brachytherapy for various radionuclides. Cardiovasc Radiat Med 5:142–150

    Article  PubMed  Google Scholar 

  19. Li XA, Wang R, Yu C, Suntharalingam M (2000) Beta versus gamma for catheter-based intravascular brachytherapy: Ddosimetric perspectives in the presence of metallic stents and calcified plaques. Int J Radiat Oncol Biol Phys 46:1043–1049

    Article  PubMed  CAS  Google Scholar 

  20. Amols HI, Trichter F, Weinberger J (1998) Intracoronary radiation for prevention of restenosis: dose perturbations caused by stents. Circulation 98:2024–2029

    PubMed  CAS  Google Scholar 

  21. Li XA, Shih R (2001) Dose effects of guide wires for catheter-based intravascular brachytherapy. Int J Radiat Oncol Biol Phys 51:1103–1110

    Article  PubMed  CAS  Google Scholar 

  22. Li XA (2003) Dose effects of stents in intravascular brachytherapy for in-stent restenosis: a Monte Carlo calculation. Int J Radiat Oncol Biol Phys 55:842–848

    Article  PubMed  Google Scholar 

  23. Fan P, Chiu-Tsao S-T, Neil Suresh Patel NS, et al. (2001) Effect of stent on radiation dosimetry in an in-stent restenosis model. Cardiovasc Radiat Med 2:18–25

    Article  PubMed  Google Scholar 

  24. Ortego PM, Prieto C, Vano E (2004) Monte Carlo parametric study of stent impact on dose for catheter-based intravascular brachytherapy with 90Sr/90Y. Med Phys 31:1964–1971

    Article  PubMed  CAS  Google Scholar 

  25. Nath R, Yue N (2001) Shielding effects of metallic encapsulations and radiographic contrast agents for catheter-based intravascular brachytherapy. Cardiovasc Radiat Med 2:93–103

    Article  PubMed  CAS  Google Scholar 

  26. Klassen NV, van der Zwan L, Cygler J (1997) GafChromic MD-55: Investigated as a precision dosimeter. Med Phys 24:1924–1934

    Article  PubMed  CAS  Google Scholar 

  27. Caccia M, Badano L, Berst D, et al. (2006) The SUCIMA project: A status report on high granularity dosimetry and proton beam monitoring. Nucl Instrum Methods PhysResA 560:153–157

    Article  CAS  Google Scholar 

  28. Furetta C, Weng PS (1998) Operational thermoluminescence dosimetry. World Scientific, Singapore/London

    Google Scholar 

  29. Weldon LM, McHugh PE, Carroll W, Costello E, O’Bradaigh C (2005) The influence of passivation and electropolishing on the performance of medical grade stainless steels in static and fatigue loading. J Mat Sci Mat Med 16:107–117

    Article  CAS  Google Scholar 

  30. Marrey RV, Burgermeister R, Grishaber RB, Ritchie RO (2006) Fatigue and life prediction for cobalt-chromium stents: a fracture mechanics analysis. Biomaterials 27:1988–2000

    Article  PubMed  CAS  Google Scholar 

  31. Kocijan A, Miloev I, Pihlar B (2004) Cobalt-based alloys for orthopaedic applications studied by electrochemical and XPS analysis. J Mat Sci Mat Med 15:643–650

    Article  CAS  Google Scholar 

  32. Cross WG, Freedman NO, Wong PY (1992) Tables of beta-ray dose distributions in water. AECL-10521, Chalk River, Canada

    Google Scholar 

  33. Fan P, Chiu-Tsao S-T, Patel NS, Shih A, Ravi K, Sherman W, Tsao H-S, Pisch J, Harrison LB (2000) Effect of stent on radiation dosimetry an in-stent restenosis model. Cardiovasc Radiat Med 2:18–25

    Article  PubMed  CAS  Google Scholar 

  34. Fox R. (1997) Dosimetry of beta emitting radionuclides for use in balloon angioplasty. Australas Phys Eng Sci Med 20:139–146

    PubMed  CAS  Google Scholar 

  35. Niroomand-Rad A, Blackwell CR, Coursey BM, Gall KP, Galvin JM, McLaughlin WL, Meigooni AS, Nath R, Rodgers JE, Soares Ch (1998) Radiochromic film dosimetry: recommendations of AAPM Radiation Therapy Committee Task Group 55. Med Phys 25:2093–2115

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Part of this work was done as MSc research by Miss Słonimska (now Mrs. Strzała). The thesis was defended at the University of Science and Technology AGH, Kraków, Poland. We thank Ms. Marta Ptaszkiewicz, MSc, and Ms. Urszula Sroka, MSc, for their assistance with the GAF film calibrations and Dr. Paweł Gaca for LSC measurement of the 90Sr solution. Free samples of stents used in this work were kindly donated by representatives of the following companies: Balton, PL; B. Braun, DE; Biocompatibles Ltd., AbbottVascular Devices, UK; Cordis Europa, Johnson-Johnson, NL; EuroCOR, DE; Guidant, USA/Europe; Medinol Ltd., IL, and& Boston Scientific SCIMED, IR; Medtronic AVE, USA and NL; and sorin biomedica Cardio, IT. Sheets of GafChromic MD55-2 film were kindly given to us by Mr. Hubert Sylwester of Medservice, PL, representative of ISP Technologies Inc., USA. Another part of this work was financially supported by the Foundation for Development of Cardiac Surgery (Fundacja Rozwoju Kardiochirurgii, Zabrze, PL). None of the authors is in any sense related to any of the companies which offered free samples of their products.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Petelenz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilczek, K., Petelenz, B., Strzała, A. et al. Dose Perturbation Caused by Stents: Experiments with a Model 90Sr/90Y Source. Cardiovasc Intervent Radiol 30, 981–991 (2007). https://doi.org/10.1007/s00270-007-9148-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-007-9148-9

Keywords

Navigation