Skip to main content
Log in

Magnetic resonance imaging protocols for examination of the neurocranium at 3 T

  • Neuro
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

The increasing availability of high-field (3 T) MR scanners requires adapting and optimizing clinical imaging protocols to exploit the theoretically higher signal-to-noise ratio (SNR) of the higher field strength. Our aim was to establish reliable and stable protocols meeting the clinical demands for imaging the neurocranium at 3 T. Two hundred patients with a broad range of indications received an examination of the neurocranium with an appropriate assortment of imaging techniques at 3 T. Several imaging parameters were optimized. Keeping scan times comparable to those at 1.5 T we increased spatial resolution. Contrast-enhanced and non-enhanced T1-weighted imaging was best applying gradient-echo and inversion recovery (rather than spin-echo) techniques, respectively. For fluid-attenuated inversion recovery (FLAIR) imaging a TE of 120 ms yielded optimum contrast-to-noise ratio (CNR). High-resolution isotropic 3D data sets were acquired within reasonable scan times. Some artifacts were pronounced, but generally imaging profited from the higher SNR. We present a set of optimized examination protocols for neuroimaging at 3 T, which proved to be reliable in a clinical routine setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

References

  1. Beck B, Plant DH, Grant SC, Thelwall PE, Silver X, Mareci TH, Benveniste H, Smith M, Collins C, Crozier S, Blackband SJ (2002) Progress in high field MRI at the University of Florida. MAGMA 13:152–157

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Mlynarik V, Gruber S, Moser E (2001) Proton T-1 and T-2 relaxation times of human brain metabolites at 3 T. NMR Biomed 14:325–331

    Article  CAS  PubMed  Google Scholar 

  3. Wansapura JP, Holland SK, Dunn RS, Ball WS (1999) NMR relaxation times in the human brain at 3 T. J Magn Reson Imaging 9:531–538

    Article  CAS  PubMed  Google Scholar 

  4. Ordidge RJ, Gorell JM, Deniau JC, Knight RA, Helpern JA (1994) Assessment of relative brain iron concentrations using T2-weighted and T2-weighted MRI at 3 T. Magn Reson Med 32:335–341

    Article  CAS  PubMed  Google Scholar 

  5. Jezzard P, Duewell S, Balaban R (1996) MR relaxation times in human brain: measurement at 4 T. Radiology 199:773–779

    Article  CAS  PubMed  Google Scholar 

  6. Glastonbury CM, Davidson HC, Harnsberger HR, Butler J, Kertesz TR, Shelton C (2002) Imaging findings of cochlear nerve deficiency. Am J Neuroradiol 23:635–643

    PubMed  Google Scholar 

  7. Mitsuoka H, Arai H, Tsunoda A, Okuda O, Sato K, Makita J (1999) Microanatomy of the cerebellopontine angle and internal auditory canal: study with new magnetic resonance imaging technique using three-dimensional fast spin echo. Neurosurgery 44:561–567

    Article  CAS  PubMed  Google Scholar 

  8. Ryu H, Tanaka T, Yamamoto S, Uemura K, Takehara Y, Isoda H (1999) Magnetic resonance cisternography used to determine precise topography of the facial nerve and three components of the eighth cranial nerve in the internal auditory canal and cerebellopontine cistern. J Neurosurg 90:624–634

    Article  CAS  PubMed  Google Scholar 

  9. Price DL, De Wilde JP, Papadaki AM, Curran JS, Kitney RI (2001) Investigation of acoustic noise on 15 MRI scanners from 0.2 to 3 T. J Magn Reson Imaging 13:288–293

    Article  CAS  PubMed  Google Scholar 

  10. Schenck JF (2000) Safety of strong, static magnetic fields. J Magn Reson Imaging 12:2–19

    Article  CAS  PubMed  Google Scholar 

  11. Kangarlu A, Robitaille PML (2000) Biological effects and health implications in magnetic resonance imaging (review). Concepts Magn Reson 12:321–359

    Article  Google Scholar 

  12. Nobauer-Huhmann IM, Ba-Ssalamah A, Mlynarik V, Barth M, Schoggl A, Heimberger K, Matula C, Fog A, Kaider A, Trattnig S (2002) Magnetic resonance imaging contrast enhancement of brain tumors at 3 vs 1.5 T. Invest Radiol 37:114–119

    Article  PubMed  Google Scholar 

  13. Gelman N, Gorell JM, Barker PB, Savage RM, Spickler EM, Windham JP, Knight RA (1999) MR imaging of human brain at 3 T: preliminary report on transverse relaxation rates and relation to estimated iron content. Radiology 210:759–767

    Article  CAS  PubMed  Google Scholar 

  14. Schenck JF (1995) Imaging of brain iron by magnetic resonance: T2 relaxation at different field strengths. J Neurol Sci 134:10–18

    Article  CAS  PubMed  Google Scholar 

  15. Hunsche S, Moseley ME, Stoeter P, Hedehus M (2001) Diffusion-tensor MR imaging at 1.5 and 3 T: initial observations. Radiology 221:550–556

    Article  CAS  PubMed  Google Scholar 

  16. Gillard JH, Papadakis NG, Martin K, Price CJ, Warburton EA, Antoun NM, Huang CL, Carpenter TA, Pickard JD (2001) MR diffusion tensor imaging of white matter tract disruption in stroke at 3 T. Br J Radiol 74:642–647

    Article  CAS  PubMed  Google Scholar 

  17. Pierpaoli C, Barnett A, Pajevic S, Chen R, Penix LR, Virta A, Basser P (2001) Water diffusion changes in Wallerian degeneration and their dependence on white matter architecture. Neuroimage 13:1174–1185

    Article  CAS  PubMed  Google Scholar 

  18. Igarashi H, Katayama Y, Tsuganezawa T, Yamamuro M, Terashi A, Owan C (1998) Three-dimensional anisotropy contrast (3DAC) magnetic resonance imaging of the human brain: application to assess Wallerian degeneration. Intern Med 37:662–668

    Article  CAS  PubMed  Google Scholar 

  19. Werring DJ, Toosy AT, Clark CA, Parker GJ, Barker GJ, Miller DH, Thompson AJ (2000) Diffusion tensor imaging can detect and quantify corticospinal tract degeneration after stroke. J Neurol Neurosurg Psychiatry 69:269–272

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Wieshmann UC, Symms MR, Clark CA, Lemieux L, Franconi F, Parker GJ, Barker GJ, Shorvon SD (1999) Wallerian degeneration in the optic radiation after temporal lobectomy demonstrated in-vivo with diffusion tensor imaging. Epilepsia 40:1155–1158

    Article  CAS  PubMed  Google Scholar 

  21. Bernstein MA, Huston J III, Lin C, Gibbs GF, Felmlee JP (2001) High-resolution intracranial and cervical MRA at 3 T: technical considerations and initial experience. Magn Reson Med 46:955–962

    Article  CAS  PubMed  Google Scholar 

  22. Reichenbach JR, Barth M, Haacke EM, Klarhofer M, Kaiser WA, Moser E (2000) High-resolution MR venography at 3 T. J Comput Assist Tomogr 24:949–957

    Article  CAS  PubMed  Google Scholar 

  23. Thomas SD, Al-Kwifi O, Emery DJ, Wilman AH (2002) Application of magnetization transfer at 3 T in three-dimensional time-of-flight magnetic resonance angiography of the intracranial arteries. J Magn Reson Imaging 15:479–483

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Schwindt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwindt, W., Kugel, H., Bachmann, R. et al. Magnetic resonance imaging protocols for examination of the neurocranium at 3 T. Eur Radiol 13, 2170–2179 (2003). https://doi.org/10.1007/s00330-003-1984-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-003-1984-7

Keywords

Navigation