Skip to main content
Log in

The optimal use of contrast agents at high field MRI

  • Contrast Media
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

The intravenous administration of a standard dose of conventional gadolinium-based contrast agents produces higher contrast between the tumor and normal brain at 3.0 Tesla (T) than at 1.5 T, which allows reducing the dose to half of the standard one to produce similar contrast at 3.0 T compared to 1.5 T. The assessment of cumulative triple-dose 3.0 T images obtained the best results in the detection of brain metastases compared to other sequences. The contrast agent dose for dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging at 3.0 T can be reduced to 0.1 mmol compared to 0.2 mmol at 1.5 T due to the increased susceptibility effects at higher magnetic field strengths. Contrast agent application makes susceptibility-weighted imaging (SWI) at 3.0 T clinically attractive, with an increase in spatial resolution within the same scan time. Whereas a double dose of conventional gadolinium-based contrast agents was optimal in SWI with respect to sensitivity and image quality, a standard dose of gadobenate dimeglumine, which has a two-fold higher T1-relaxivity in blood, produced the same effect. For MR-arthrography, optimized concentrations of gadolinium-based contrast agents are similar at 3.0 and 1.5 T. In summary, high field MRI requires the optimization of the contrast agent dose in different clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Frayne R, Goodyear BG, Dickhoff P et al (2003) Magnetic resonance imaging at 3.0 Tesla; Challenges and advantages in clinical neuroimaging. Invest Radiol 38:385–402

    Article  PubMed  Google Scholar 

  2. Schild H (2005) Klinische Hochfeld-MRT. Fortschr Röntgenstr 177:621–631

    Article  CAS  Google Scholar 

  3. Bernstein MA, Huston J, Lin C et al (2001) High-resolution intracranial and cervical MRA at 3.0 T: technical considerations and initial experience. Magn Reson Med 46:955–962

    Article  PubMed  CAS  Google Scholar 

  4. Thulborn KR (1999) Clinical rationale for very high field (3.0 T) functional magnetic resonance imaging. Top Magn Reson Imag 10:37–50

    Article  CAS  Google Scholar 

  5. Gonen O, Gruber S, Li BS et al (2001) Multivoxel 3D proton spectroscopy in the brain at 1.5 T versus 3.0 T: signal-to-noise ratio and resolution comparison. AJNR 22:1727–1731

    PubMed  CAS  Google Scholar 

  6. Hunsche S, Moseley ME, Stoeter P, Hedehus M (2001) Diffusion-tensor MR imaging at 1.5 and 3.0 T: initial observations. Radiology 221:550–556

    Article  PubMed  CAS  Google Scholar 

  7. Rinck PA, Fischer HW, Van der Elst D et al (1988) Field-cycling relaxometry: medical applications. Radiology 168:843–849

    PubMed  CAS  Google Scholar 

  8. Wood ML, Hardy PA (1993) Proton relaxation enhancement. J Magn Reson Imaging 3:149–156

    Article  PubMed  CAS  Google Scholar 

  9. Fernandez-Seara MA, Wehrli FW (2000) Postprocessing technique to correct for background gradients in image-based R* (2) measurements. Magn Reson Med 44:358–366

    Article  PubMed  CAS  Google Scholar 

  10. Wansapura JP, Holland SK, Dunn RS, Ball WS (1999) NMR relaxation times in the human brain at 3.0 Tesla. J Magn Reson Imaging 9:531–538

    Article  PubMed  CAS  Google Scholar 

  11. Elster AD (1994) Field-strength dependence of gadolinium enhancement: theory and implications. AJNR 15:1420–1423

    Google Scholar 

  12. Akeson P, Vikhoff B, Stahlberg F et al (1997) Brain lesion contrast in MR imaging: dependence of field strength and concentration of gadodiamide injection in patients and phantoms. Acta Radiol 38:14–18

    Article  PubMed  CAS  Google Scholar 

  13. Chang KH, Ra DG, Han MH et al (1994) Contrast enhancement of brain tumours at different MR field strengths. Comparison of 0.5 T and 2.0 T. AJNR 15:1413–1419

    PubMed  CAS  Google Scholar 

  14. Haustein J, Laniado M, Niendorf H-P et al (1992) Administration of gadopenteate dimeglumine in MR imaging of intracranial tumours: dosage and field strength. AJNR 13:1199–1206

    PubMed  CAS  Google Scholar 

  15. Nöbauer-Huhmann IM, Ba-Ssalamah A, Mlynarik V et al (2002) Magnetic resonance imaging contrast enhancement of brain tumours at 3 Tesla versus 1.5 Tesla. Invest Radiol 37:114–119

    Article  PubMed  Google Scholar 

  16. Krautmacher C, Tschampa H, Born M, C et al (2003) MRI of contrast enhancing brain tumours at 3 Tesla versus 1.5 Tesla: first clinical results evaluating T1-weighted SE, FFE and MDEFT sequences. ECR, European Congress of Radiology 437

  17. Martini N (1993) Operable lung cancer. CA Cancer J Clin 43(4):201–214

    PubMed  CAS  Google Scholar 

  18. Healy ME, Hesselink JR, Press GA, Middleton MS (1987) Increased detection of intracranial metastases with intravenous Gd-DTPA. Radiology 165:619–624

    PubMed  CAS  Google Scholar 

  19. Yuh WT, Fisher DJ, Engelken JD et al (1991) MR evaluation of CNS tumours: dose comparison study with gadopentetate dimeglumine and gadoteridol. Radiology 180:485–491

    PubMed  CAS  Google Scholar 

  20. Runge VM, Kirsch JE, Burke VJ et al (1992) High-dose gadoteridol in MR imaging of intracranial neoplasmas. J Magn Reson Imaging 2:9–18

    Article  PubMed  CAS  Google Scholar 

  21. Ba-Ssalamah A, Noebauer-Huhmann IM, Pinker K et al (2003) The effect of contrast dose and field strength in the MR detection of brain metastases. Invest Radiol 38:414–421

    Article  Google Scholar 

  22. Naganawa S, Koshikawa T, Nakamura T et al (2004) Comparison of flow artefacts between 2D-FLAIR and 3D-FLAIR sequences at 3 T. Eur Radiol 14:1901–1908

    PubMed  Google Scholar 

  23. Parizel PM, Dijkstra HA, Geenen GP et al (1995) Low-field versus high-field MR imaging of the knee: a comparison of signal behaviour and diagnostic performance. Eur J Radiol 19:132–138

    Article  PubMed  CAS  Google Scholar 

  24. Schick F (2005) Whole-body MRI at high field: technical limits and clinical potential. Eur Radiol 15:946–959

    Article  PubMed  Google Scholar 

  25. Heiland S, Kreibich W, Reith W et al (1998) Comparison of echo-planar sequences for perfusion-weighted MRI: which is best? Neuroradiology 40:216–221

    Article  PubMed  CAS  Google Scholar 

  26. Manka Ch, Träber F, Gleseke J, Schild H, Kuhl C (2005) Three-demensional dynamic susceptibility-weighted perfusion MR imaging at 3.0 T: feasibility and contrast agent dose. Eur Radiol 234:869–877

    Google Scholar 

  27. Flacke S, Urbach H, Folkers PJ et al (2000) Ultra-fast three-dimensional MR perfusion imaging of the entire brain in acute stroke assessment. J Magn Reson Imaging 11:250–259

    Article  PubMed  CAS  Google Scholar 

  28. Flacke S, Urbach H, Block W et al (2002) Perfusion and molecular diffusion-weighted MR imaging of the brain: in vivo assessment of tissue alteration in vertebral ischemia. Amino Acids 23:309–316

    Article  PubMed  CAS  Google Scholar 

  29. Essig M, Lodemann KP, LeHuu M, Schonberg SO, Hubener M, Van Kaick G (2002) Comparison of multihance and gadovist for cerebral MR perfusion imaging in healthy volunteers. Radiology 42:909–915

    Article  CAS  Google Scholar 

  30. Liu G, Sobering G, Duyn J, Moonen CT (1993) A functional MRI technique combining principles of echo-shifting with a train of observations (PRESTO). Magn Reson Med 30:764–768

    Article  PubMed  CAS  Google Scholar 

  31. Van Gelderen P, Grandin C, Petrella JR, Moonen CT (2000) Rapid three-dimensional MR imaging method for tracking a bolus of contrast agent through the brain. Radiology 216:603–608

    PubMed  Google Scholar 

  32. Duyn JH, Van Gelderen P, Barker P, Frank JA, Mattay VS, Moonen CT (1994) 3D bolus tracking with frequency-shifted BURST MRI. J Comput Assist Tomogr 18:680–687

    Article  PubMed  CAS  Google Scholar 

  33. Cavagna FM, Maggioni F, Castelli PM et al (1997) Gadolinium chelates with weak binding to serum proteins. A new class of high-efficiency, general purpose contrast agents for magnetic resonance imaging. Invest Radiol 32:780–796

    Article  PubMed  CAS  Google Scholar 

  34. Tombach B, Benner T, Reimer P et al (2003) Do highly concentrated gadolinium chelates improve MR brain perfusion imaging? Intraindividually controlled randomized crossover concentration comparison study of 0.5 verus 1.0 mol/l gadobutrol. Radiology 226:880–888

    Article  PubMed  Google Scholar 

  35. Reichenbach JR, Venkatesan R, Schillinger DJ et al (1997) Small vessels in the human brain: MR venography with deoxyhemoglobolin as an intrinsic contrast agent. Radiology 204(1):272–277

    PubMed  CAS  Google Scholar 

  36. Reichenbach JR, Jonetz-Mentzel L, Fitzek C et al (2001) High-resolution blood oxygen-level dependent MR venography (HRBV): a new technique. Neuroradiology 43(5):364–369

    Article  PubMed  CAS  Google Scholar 

  37. Essig M, Reichenbach JR, Schad LR et al (1999) High-resolution MR venography of cerebral arteriovenous malformations. Magn Reson Imaging 17(19):1417–1425

    Article  PubMed  CAS  Google Scholar 

  38. Lee BC, Vo KD, Kido DK et al (1999) MR high-resolution blood oxygenation level-dependent venography of occult (low-flow) vascular lesions. AJNR 20(7):1239–1342

    PubMed  CAS  Google Scholar 

  39. Tan IL, van Schijndel RA, Pouwels PJ et al (2000) MR venography of multiple sclerosis. AJNR 21(6):1039–1042

    PubMed  CAS  Google Scholar 

  40. Reichenbach JR, Barth M, Haacke EM et al (2000) High resolution MR venography at 3.0 Tesla. J Comput Assist Tomogr 24:949–957

    Article  PubMed  CAS  Google Scholar 

  41. Novak V, Abduljalil A, Kangarlu A et al (2001) Intracranial ossifications and microangiopathy at 8 Tesla MRI. Magn Reson Imaging 19(8):1133–1137

    Article  PubMed  CAS  Google Scholar 

  42. Lin W, Mukherjee P, An H et al (1999) Improving high-resolution MR bold venograhic imaging using at T1 reducing contrast agent. J Magn Reson Imaging 10(2):118–123

    Article  PubMed  CAS  Google Scholar 

  43. Barth M, Nöbauer-Huhmann IM, Reichenbach JR et al (2003)High resolution three-dimensional contrast-enhanced blood oxygenation level-dependent magnetic resonance venography of brain tumours at 3 Tesla: First clinical experience and comparison with 1.5 Tesla. Invest Radiol 38:408–413

    Article  Google Scholar 

  44. Nöbauer-Huhmann I, Tratting S, Pinker K, Barth M, Mlynarik V, Beisteiner R, Weber M, Witoszynskyj S, Raucher A, Reichenbach J, Ba-Ssalamah A (in press) Contrast-enhanced high resolution susceptibility weighted MR imaging (CE-SWI) of brain: Dosage dependent optimization at 3 Tesla and 1.5 Tesla in healthy volunteers. Department of Radiology. Invest Radiol

  45. Tynninen O, Aronen HJ, Ruhala M et al (1999) MRI enhancement and microvascular density in gliomas. Correlation with tumour cell proliferation. Invest Radiol 34(6):427–434

    Article  PubMed  CAS  Google Scholar 

  46. Henry RG, Vigneron DB, Fischbein NJ et al (2000) Comparison of relative cerebral blood volume and proton spectroscopy in patients with treated gliomas. AJNR 21(2):357–366

    PubMed  CAS  Google Scholar 

  47. Kuperman V, River JN, Lewis MZ et al (1995) Changes in T2*-weighted images during hyperoxia differentiate tumours from normal tissue. Magn Reson Med 33(3):318–325

    Article  PubMed  Google Scholar 

  48. Karczmar GS, Kuperman VY, River NJ et al (1994) Magnetic resonance measurement of response to hyperoxia differentiates tumours from normal tissue and may be sensitive to oxygen consumption. Invest Radiol 29(Suppl 2):161–163

    Article  Google Scholar 

  49. Robinson SP, Howe FA, Griffiths JR (1995) Noninvasive monitoring of carbogen-induced changes in tumour blood flow and oxygenation by functional magnetic resonance imaging. Int J Radiat Oncol Biol Phys 33(4):855–859

    Article  PubMed  CAS  Google Scholar 

  50. Robinson SP, Howe FA, Rodrigues LM et al (1998) Magnetic resonance imaging techniques for monitoring changes in tumour oxygenation and blood flow. Semin Radiat Oncol 8(3):197–207

    Article  PubMed  CAS  Google Scholar 

  51. Steinbach LS, Palmer WE, Schweitzer ME (2002) Special focus session: MR arthrography. Radiographics 22:1223–1246

    PubMed  Google Scholar 

  52. Chung CB, Corrente L, Resnick D (2004) MR arthrography of the shoulder. Magn Reson Imaging Clin N Am 12:25–38

    Article  PubMed  Google Scholar 

  53. Czerny C, Oschatz E, Neuhold A, Tschauner C, Hofmann S, Kramer J (2002) MR Arthrographie des Hüftgelenkes. Radiologe 42:451–456

    Article  PubMed  CAS  Google Scholar 

  54. Waldt S, Burkart A, Lange P, Imhoff AB, Rummeny EJ, Wortler K (2004) Diagnostic performance of MR arthorgraphy in the assessment of superior labral anterosposterior lesions of the shoulder. AJR 182:1271–1278

    PubMed  Google Scholar 

  55. Grainger AJ, Elliott JM, Campbell RS, Tirman PF, Steinbach LS, Genant HK (2000). Direct MR arthrography: a review of current use. Clin Radiol 55:163–176

    Article  PubMed  CAS  Google Scholar 

  56. Masi J, Newitt D, A.Sell Ch, Daldrup-Link H, Steinbach L, Majumdar S, Link T (2005) Optimization of gadodiamide concentration for MR arthrography at 3 T. AJR 184:1754–1761

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siegfried Trattnig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trattnig, S., Pinker, K., Ba-Ssalamah, A. et al. The optimal use of contrast agents at high field MRI. Eur Radiol 16, 1280–1287 (2006). https://doi.org/10.1007/s00330-006-0154-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-006-0154-0

Keywords

Navigation