Skip to main content
Log in

Extracranial applications of diffusion-weighted magnetic resonance imaging

  • Magnetic Resonance
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Diffusion-weighted MRI has become more and more popular in the last couple of years. It is already an accepted diagnostic tool for patients with acute stroke, but is more difficult to use for extracranial applications due to technical challenges mostly related to motion sensitivity and susceptibility variations (e.g., respiration and air-tissue boundaries). However, thanks to the newer technical developments, applications of body DW-MRI are starting to emerge. In this review, we aim to provide an overview of the current status of the published data on DW-MRI in extracranial applications. A short introduction to the physical background of this promising technique is provided, followed by the current status, subdivided into three main topics, the functional evaluation, tissue characterization and therapy monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Carr HY, Purcell EM (1954) Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev 94:630–638

    Article  CAS  Google Scholar 

  2. Hahn EL (1950) Spin echoes. Phys Rev 80:580–594

    Article  Google Scholar 

  3. Stejskal EO, Tanner JE (1965) Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 42:288–292

    Article  CAS  Google Scholar 

  4. Moseley ME, Cohen Y, Mintorovitch J, Chileuitt L, Shimizu H, Kucharczyk J, Wendland MF, Weinstein PR (1990) Early detection of regional cerebral ischemia in cats: comparison of diffusion- and T2-weighted MRI and spectroscopy. Magn Reson Med 14:330–346

    Article  PubMed  CAS  Google Scholar 

  5. Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168:497–505

    PubMed  Google Scholar 

  6. Neil JJ, Ackerman JH (1992) Detection of pseudodiffusion in rat brain following blood substitution wth perfluorocarbon. J Magn Reson 97:194–201

    CAS  Google Scholar 

  7. Schaefer PW, Grant PE, Gonzalez RG (2000) Diffusion-weighted MR imaging of the brain. Radiology 217:331–345

    PubMed  CAS  Google Scholar 

  8. Murtz P, Flacke S, Traber F, van den Brink JS, Gieseke J, Schild HH (2002) Abdomen: diffusion-weighted MR imaging with pulse-triggered single-shot sequences. Radiology 224:258–264

    Article  PubMed  Google Scholar 

  9. Thoeny HC, De Keyzer F, Boesch C, Hermans R (2004) Diffusion-weighted imaging of the parotid gland: influence of the choice of b-values on the apparent diffusion coefficient value. J Magn Reson Imaging 20:786–790

    Article  PubMed  Google Scholar 

  10. Mardor Y, Pfeffer R, Spiegelmann R, Roth Y, Maier SE, Nissim O, Berger R, Glicksman A, Baram J, Orenstein A, Cohen JS, Tichler T (2003) Early detection of response to radiation therapy in patients with brain malignancies using conventional and high b-value diffusion-weighted magnetic resonance imaging. J Clin Oncol 21:1094–1100

    Article  PubMed  Google Scholar 

  11. Lyng H, Haraldseth O, Rofstad EK (2000) Measurement of cell density and necrotic fraction in human melanoma xenografts by diffusion weighted magnetic resonance imaging. Magn Reson Med 43:828–836

    Article  PubMed  CAS  Google Scholar 

  12. Bammer R (2003) Basic principles of diffusion-weighted imaging. Eur J Radiol 45:169–184

    Article  PubMed  Google Scholar 

  13. Ries M, Jones RA, Basseau F, Moonen CT, Grenier N (2001) Diffusion tensor MRI of the human kidney. J Magn Reson Imaging 14:42–49

    Article  PubMed  CAS  Google Scholar 

  14. Muller MF, Prasad P, Siewert B, Nissenbaum MA, Raptopoulos V, Edelman RR (1994) Abdominal diffusion mapping with use of a whole-body echo-planar system. Radiology 190:475–478

    PubMed  CAS  Google Scholar 

  15. Siegel CL, Aisen AM, Ellis JH, Londy F, Chenevert TL (1995) Feasibility of MR diffusion studies in the kidney. J Magn Reson Imaging 5:617–620

    Article  PubMed  CAS  Google Scholar 

  16. Yamada I, Aung W, Himeno Y, Nakagawa T, Shibuya H (1999) Diffusion coefficients in abdominal organs and hepatic lesions: evaluation with intravoxel incoherent motion echo-planar MR imaging. Radiology 210:617–623

    PubMed  CAS  Google Scholar 

  17. Jones RA, Grattan-Smith JD (2003) Age dependence of the renal apparent diffusion coefficient in children. Pediatr Radiol 33:850–854

    Article  PubMed  Google Scholar 

  18. Prasad PV, Priatna A (1999) Functional imaging of the kidneys with fast MRI techniques. Eur J Radiol 29:133–148

    Article  PubMed  CAS  Google Scholar 

  19. Namimoto T, Yamashita Y, Mitsuzaki K, Nakayama Y, Tang Y, Takashani M (1999) Measurement of the apparent diffusion coefficient in diffuse renal disease by diffusion-weighted echo-planar MR imaging. J Magn Reson Imaging 9:832–837

    Article  PubMed  CAS  Google Scholar 

  20. Chow LC, Bammer R, Moseley ME, Sommer FG (2003) Single breath-hold diffusion-weighted imaging of the abdomen. J Magn Reson Imaging 18:377–382

    Article  PubMed  Google Scholar 

  21. Yang D, Ye Q, Williams DS, Hitchens TK, Ho C (2004) Normal and transplanted rat kidneys: diffusion MR imaging at 7T. Radiology 231:702–709

    Article  PubMed  Google Scholar 

  22. Thoeny HC, De Keyzer F, Oyen RH, Peeters RR (2005) Diffusion-weighted MR imaging of kidneys in healthy volunteers and patients with parenchymal diseases: initial experience. Radiology 235:911–917

    Article  PubMed  Google Scholar 

  23. Ichikawa T, Haradome H, Hachiya J, Nitatori T, Araki T (1999) Diffusion-weighted MR imaging with single-shot echo-planar imaging in the upper abdomen: preliminary clinical experience in 61 patients. Abdom Imaging 24:456–461

    Article  PubMed  CAS  Google Scholar 

  24. Muller MF, Prasad PV, Bimmler D, Kaiser A, Edelman RR (1994) Functional imaging of the kidney by means of measurement of the apparent diffusion coefficient. Radiology 193:711–715

    PubMed  CAS  Google Scholar 

  25. Pedersen M, Wen JG, Shi Y, Beigi N, Christensen TB, Stodkilde-Jorgensen H, Frokiaer J (2003) The effect of unilateral ureteral obstruction on renal function in pigs measured by diffusion-weighted MRI. APMIS Suppl 109:29–34

    PubMed  Google Scholar 

  26. Ries M, Basseau F, Tyndal B, Jones R, Deminiere C, Catargi B, Combe C, Moonen CW, Grenier N (2003) Renal diffusion and BOLD MRI in experimental diabetic nephropathy. J Magn Reson Imaging 17:104–113

    Article  PubMed  Google Scholar 

  27. Liu AS, Xie JX (2003) Functional evaluation of normothermic ischemia and reperfusion injury in dog kidney by combining MR diffusion-weighted imaging and Gd-DTPA enhanced first-pass perfusion. J Magn Reson Imaging 17:683–693

    Article  PubMed  Google Scholar 

  28. Fukuda Y, Ohashi I, Hanafusa K, Nakagawa T, Ohtani S, An-naka Y, Hayashi T, Shibuya H (2000) Anisotropic diffusion in kidney: apparent diffusion coefficient measurements for clinical use. J Magn Reson Imaging 11:156–160

    Article  PubMed  CAS  Google Scholar 

  29. Chan JH, Tsui EY, Luk SH, Fung SL, Cheung YK, Chan MS, Yuen MK, Mak SF, Wong KP (2001) MR diffusion-weighted imaging of kidney: differentiation between hydronephrosis and pyonephrosis. Clin Imaging 25:110–113

    Article  PubMed  CAS  Google Scholar 

  30. Toyoshima S, Noguchi K, Seto H, Shimizu M, Watanabe N (2000) Functional evaluation of hydronephrosis by diffusion-weighted MR imaging. Relationship between apparent diffusion coefficient and split glomerular filtration rate. Acta Radiol 41:642–646

    Article  PubMed  CAS  Google Scholar 

  31. Squillaci E, Manenti G, Di Stefano F, Miano R, Strigari L, Simonetti G (2004) Diffusion-weighted MR imaging in the evaluation of renal tumours. J Exp Clin Cancer Res 23:39–45

    PubMed  CAS  Google Scholar 

  32. Sumi M, Takagi Y, Uetani M, Morikawa M, Hayashi K, Kabasawa H, Aikawa K, Nakamura T (2002) Diffusion-weighted echoplanar MR imaging of the salivary glands. AJR Am J Roentgenol 178:959–965

    PubMed  Google Scholar 

  33. Yoshino N, Yamada I, Ohbayashi N, Honda E, Ida M, Kurabayashi T, Maruyama K, Sasaki T (2001) Salivary glands and lesions: evaluation of apparent diffusion coefficients with split-echo diffusion-weighted MR imaging-initial results. Radiology 221:837–842

    Article  PubMed  CAS  Google Scholar 

  34. Zhang L, Murata Y, Ishida R, Ohashi I, Yoshimura R, Shibuya H (2001) Function evaluation with intravoxel incoherent motion echo-planar MRI in irradiated salivary glands: a correlative study with salivary gland scintigraphy. J Magn Reson Imaging 14:223–229

    Article  PubMed  CAS  Google Scholar 

  35. Thoeny HC, De Keyzer F, Claus FG, Sunaert S, Hermans R (2005) Gustatorystimulation changes the apparent diffusion coefficient of salivary glands. Radiology 235:629–634

    Article  PubMed  Google Scholar 

  36. Habermann CR, Cramer MC, Graessner J, Gossrau P, Reitmeier F, Fiehler J, Schoder V, Jaehne M, Adam G (2004) Functional imaging of parotid glands: diffusion-weighted echo-planar MRI before and after stimulation. Rofo 176:1385–1389

    PubMed  CAS  Google Scholar 

  37. Habermann CR, Gossrau P, Graessner J, Arndt C, Cramer MC, Reitmeier F, Jaehne M, Adam G (2005) Diffusion-weighted echo-planar MRI: a valuable tool for differentiating primary parotid gland tumors? RoFo 177:940–945

    PubMed  CAS  Google Scholar 

  38. Erturk SM, Ichikawa T, Motosugi U, Sou H, Araki T (2006) Diffusion-weighted MR imaging in the evaluation of pancreatic exocrine function before and after secretin stimulation. Am J Gastroenterol 101:133–136

    Article  PubMed  Google Scholar 

  39. Lang P, Wendland MF, Saeed M, Gindele A, Rosenau W, Mathur A, Gooding CA, Genant HK (1998) Osteogenic sarcoma: noninvasive in vivo assessment of tumor necrosis with diffusion-weighted MR imaging. Radiology 206:227–235

    PubMed  CAS  Google Scholar 

  40. Gupta RK, Cloughesy TF, Sinha U, Garakian J, Lazareff J, Rubino G, Rubino L, Becker DP, Vinters HV, Alger JR (2000) Relationships between choline magnetic resonance spectroscopy, apparent diffusion coefficient and quantitative histopathology in human glioma. J Neurooncol 50:215–226

    Article  PubMed  CAS  Google Scholar 

  41. Sugahara T, Korogi Y, Kochi M, Ikushima I, Shigematu Y, Hirai T, Okuda T, Liang L, Ge Y, Komohara Y, Ushio Y, Takahashi M (1999) Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging 9:53–60, 1999

    Article  PubMed  CAS  Google Scholar 

  42. Uhl M, Altehoefer C, Kontny U, Il’yasov K, Büchert M, Langer M (2002) MRI-diffusion imaging of neuroblastomas: first results and correlation with histology. Eur Radiol 12:2335–2338

    PubMed  CAS  Google Scholar 

  43. Kim T, Murakami T, Takahashi S, Hori M, Tsuda K, Nakamura H (1999) Diffusion-weighted single-shot echoplanar MR imaging for liver disease. AJR Am J Roentgenol 173:393–398

    PubMed  CAS  Google Scholar 

  44. Issa B (2002) In vivo measurement of the apparent diffusion coefficient in normal and malignant prostatic tissues using echo-planar imaging. J Magn Reson Imaging 16:196–200

    Article  PubMed  Google Scholar 

  45. Wheeler-Kingshott CA, Thomas DL, Lythgoe MF, Guilfoyle D, Williams SR, Doran SJ (2000) Burst excitation for quantitative diffusion imaging with multiple b-values. Magn Reson Med 44:737–745

    Article  PubMed  CAS  Google Scholar 

  46. Koinuma M, Ohashi I, Hanafusa K, Shibuya H (2005) Apparent diffusion coefficient measurements with diffusion-weighted magnetic resonance imaging for evaluation of hepatic fibrosis. J Magn Reson Imaging 22:80–85

    Article  PubMed  Google Scholar 

  47. Taouli B, Vilgrain V, Dumont E, Daire JL, Fan B, Menu Y (2003) Evaluation of liver diffusion isotropy and characterization of focal hepatic lesions with two single-shot echo-planar MR imaging sequences: prospective study in 66 patients. Radiology 226:71–78

    Article  PubMed  Google Scholar 

  48. Naganawa S, Sato C, Nakamura T, Kumada H, Ishigaki T, Miura S, Maruyama K, Takizawa O (2005) Diffusion-weighted images of the liver: comparison of tumor detection before and after contrast enhancement with superparamagnetic iron oxide. J Magn Reson Imaging 21:836–840

    Article  PubMed  Google Scholar 

  49. Sinha S, Lucas-Quesada FA, Sinha U, DeBruhl N, Bassett LW (2002) In vivo diffusion-weighted MRI of the breast: potential for lesion characterization. J Magn Reson Imaging 15:693–704

    Article  PubMed  Google Scholar 

  50. Guo Y, Cai YQ, Cai ZL, Gao YG, An NY, Ma L, Mahankali S, Gao JH (2002) Differentiation of clinically benign and malignant breast lesions using diffusion-weighted imaging. J Magn Reson Imaging 16:172–178

    Article  PubMed  Google Scholar 

  51. Woodhams R, Matsunaga K, Iwabuchi K, Kan S, Hata H, Kuranami M, Watanabe M, Hayakawa K (2005) Diffusion-weighted imaging of malignant breast tumors: the usefulness of apparent diffusion coefficient (ADC) value and ADC map for the detection of malignant breast tumors and evaluation of cancer extension. J Comput Assist Tomogr 29:644–649

    Article  PubMed  Google Scholar 

  52. Sumi M, Sakihama N, Sumi T, Morikawa M, Uetani M, Kabasawa H, Shigeno K, Hayashi K, Takahashi H, Nakamura T (2003) Discrimination of metastatic cervical lymph nodes with diffusion-weighted MR imaging in patients with head and neck cancer. AJNR Am J Neuroradiol 24:1627–1634

    PubMed  Google Scholar 

  53. Dubrulle F, Souillard R, Chechin D, Vaneecloo FM, Desaulty A, Vincent C (2006) Diffusion-weighted MR imaging sequence in the detection of postoperative recurrent cholesteatoma. Radiology 238:604–610

    Article  PubMed  Google Scholar 

  54. Vercruysse JP, De Foer B, Pouillon M, Somers T, Casselman J, Offeciers E (2006) The value of diffusion-weighted MR imaging in the diagnosis of primary acquired and residual cholesteatoma: a surgical verified study of 100 patients. Eur Radiol 16(7):1461–1467

    Article  PubMed  Google Scholar 

  55. Stasolla A, Magliulo G, Parrotto D, Luppi G, Marini M (2004) Detection of postoperative relapsing/residual cholesteatomas with diffusion-weighted echo-planar magnetic resonance imaging. Otol Neurotol 25:879–884

    Article  PubMed  Google Scholar 

  56. Stasolla A, Magliulo G, Lo Mele L, Prossomariti G, Luppi G, Marini M (2004) Value of echo-planar diffusion-weighted MRI in the detection of secondary and postoperative relapsing/residual cholesteatoma. Radiol Med (Torino) 107:556–568

    Google Scholar 

  57. Aikele P, Kittner T, Offergeld C, Kaftan H, Huttenbrink KB, Laniado M (2003) Diffusion-weighted MR imaging of cholesteatoma in pediatric and adult patients who have undergone middle ear surgery. AJR Am J Roentgenol 181:261–265

    PubMed  CAS  Google Scholar 

  58. Herneth AM, Philipp MO, Naude J, Funovics M, Beichel RR, Bammer R, Imhof H (2002) Vertebral metastases: assessment with apparent diffusion coefficient. Radiology 225:889–894

    Article  PubMed  Google Scholar 

  59. Park SW, Lee JH, Ehara S, Park YB, Sung SO, Choi JA, Joo YE (2004) Single shot fast spin echo diffusion-weighted MR imaging of the spine; is it useful in differentiating malignant metastatic tumor infiltration from benign fracture edema? Clin Imaging 28:102–108

    Article  PubMed  Google Scholar 

  60. Baur A, Stabler A, Bruning R, Bartl R, Krodel A, Reiser M, Deimling M (1998) Diffusion-weighted MR imaging of bone marrow: differentiation of benign versus pathologic compression fractures. Radiology 207:349–356

    PubMed  CAS  Google Scholar 

  61. Chan JH, Peh WC, Tsui EY, Chau LF, Cheung KK, Chan KB, Yuen MK, Wong ET, Wong KP (2002) Acute vertebral body compression fractures: discrimination between bening and malignant causes using apparent diffusion coefficients. Br J Radiol 75:207–214

    PubMed  CAS  Google Scholar 

  62. Baur A, Huber A, Ertl-Wagner B, Durr R, Zysk S, Arbogast S, Deimling M, Reiser M (2001) Diagnostic value of increased diffusion weighting of a steady-state free precession sequence for differentiating acute bening osteoporotic fractures from pathologic vertebral compression fractures. AJNR Am J Neuroradiol 22:366–372

    PubMed  CAS  Google Scholar 

  63. Byun WM, Shin SO, Chang Y, Lee SJ, Finsterbusch J, Frahm J (2002) Diffusion-weighted MR imaging of metastatic disease of the spine: assessment of response to therapy. AJNR Am J Neuroradiol 23:906–912

    PubMed  Google Scholar 

  64. van Rijswijk CS, Kunz P, Hogendoorn PC, Taminiau AH, Doornbos J, Bloem JL (2002) Diffusion-weighted MRI in the characterization of soft-tissue tumors. J Magn Reson Imaging 15:302–307

    Article  PubMed  Google Scholar 

  65. Einarsdottir H, Karlsson M, Wejde J, Bauer HC (2004) Diffusion-weighted MRI of soft tissue tumours. Eur Radiol 14:959–963

    Article  PubMed  Google Scholar 

  66. Katayama M, Masui T, Kobayashi S, Ito T, Sakahara H, Nozaki A, Kabasawa H (2002) Diffusion-weighted echo planar imaging of ovarian tumors: is it useful to measure apparent diffusion coefficients? J Comput Assist Tomogr 26:250–256

    Article  PubMed  Google Scholar 

  67. Nakayama T, Yoshimitsu K, Irie H, Aibe H, Tajima T, Nishie A, Asayama Y, Matake K, Kakihara D, Matsuura S, Nakano H, Honda H (2005) Diffusion-weighted echo-planar MR imaging and ADC mapping in the differential diagnosis of ovarian cystic masses: usefulness of detecting keratinoid substances in mature cystic teratomas. J Magn Reson Imaging 22:271–278

    Article  PubMed  Google Scholar 

  68. Shimofusa R, Fujimoto H, Akamata H, Motoori K, Yamamoto S, Ueda T, Ito H (2005) Diffusion-weighted imaging of prostate cancer. J Comput Assist Tomogr 29:149–153

    Article  PubMed  Google Scholar 

  69. Hosseinzadeh K, Schwarz SD (2004) Endorectal diffusion-weighted imaging in prostate cancer to differentiate malignant and benign peripheral zone tissue. J Magn Reson Imaging 20:654–661

    Article  PubMed  Google Scholar 

  70. Pickles MD, Gibbs P, Sreenivas M, Turnbull LW (2006) Diffusion-weighted imaging of normal and malignant prostate tissue at 3.0T. J Magn Reson Imaging 23:130–134

    Article  PubMed  Google Scholar 

  71. Dzik-Jurasz A, Domenig C, George M, Wolber J, Padhani A, Brown G, Doran S (2002) Diffusion MRI for prediction of response of rectal cancer to chemoradiation. Lancet 360:307–308

    Article  PubMed  Google Scholar 

  72. DeVries AF, Kremser C, Hein PA, Griebel J, Krezcy A, Ofner D, Pfeiffer KP, Lukas P, Judmaier W (2003) Tumor microcirculation and diffusion predict therapy outcome for primary rectal carcinoma. Int J Radiat Oncol Biol Phys 56:958–965

    Article  PubMed  Google Scholar 

  73. Thoeny HC, De Keyzer F, Chen F, Ni Y, Landuyt W, Verbeken EK, Bosmans H, Marchal G, Hermans R (2005) Diffusion-weighted MR imaging in monitoring the effect of a vascular targeting agent on rhabdomyosarcoma in rats. Radiology 234:756–764

    Article  PubMed  Google Scholar 

  74. Chenevert TL, Stegman LD, Taylor JM, Robertson PL, Greenberg HS, Rehemtulla A, Ross BD (2000) Diffusion magnetic resonance imaging: an early surrogate marker of therapeutic efficacy in brain tumors. J Natl Cancer Inst 92:2029–2035

    Article  PubMed  CAS  Google Scholar 

  75. Galons JP, Altbach MI, Paine-Murrieta GD, Taylor CW, Gillies RJ (1999) Early increases in breast tumor xenograft water mobility in response to paclitaxel therapy detected by non-invasive diffusion magnetic resonance imaging. Neoplasia 1:113–117

    Article  PubMed  CAS  Google Scholar 

  76. Thoeny HC, De Keyzer F, Vandecaveye V, Chen F, Sun X, Bosmans H, Hermans R, Verbeken EK, Boesch C, Marchal G, Landuyt W, Ni Y (2005) Effect of vascular targeting agent in rat tumor model: dynamic contrast-enhanced versus diffusion-weighted MR imaging. Radiology 237:492–499

    Article  PubMed  Google Scholar 

  77. Jacobs MA, Herskovits EH, Kim HS (2005) Uterine fibroids: diffusion-weighted MR imaging for monitoring therapy with focused ultrasound surgery-preliminary study. Radiology 236:196–203

    Article  PubMed  Google Scholar 

  78. Kamel IR, Bluemke DA, Ramsey D, Abusedera M, Torbenson M, Eng J, Szarf G, Geschwind JF (2003) Role of diffusion-weighted imaging in estimating tumor necrosis after chemoembolization of hepatocellular carcinoma. AJR Am J Roentgenol 181:708–710

    PubMed  Google Scholar 

Download references

Acknowledgment

We would like to thank Dr. Anwar R. Padhani of the Mount Vernon Cancer Centre, London, for his many helpful comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harriet C. Thoeny.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thoeny, H.C., De Keyzer, F. Extracranial applications of diffusion-weighted magnetic resonance imaging. Eur Radiol 17, 1385–1393 (2007). https://doi.org/10.1007/s00330-006-0547-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-006-0547-0

Keywords

Navigation