Skip to main content
Log in

Diffusion-weighted imaging in normal fetal brain maturation

  • Pediatric
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Diffusion-weighted imaging (DWI) provides information about tissue maturation not seen on conventional magnetic resonance imaging. The aim of this study is to analyze the evolution over time of the apparent diffusion coefficient (ADC) of normal fetal brain in utero. DWI was performed on 78 fetuses, ranging from 23 to 37 gestational weeks (GW). All children showed at follow-up a normal neurological evaluation. ADC values were obtained in the deep white matter (DWM) of the centrum semiovale, the frontal, parietal, occipital and temporal lobe, in the cerebellar hemisphere, the brainstem, the basal ganglia (BG) and the thalamus. Mean ADC values in supratentorial DWM areas (1.68 ± 0.05 mm2/s) were higher compared with the cerebellar hemisphere (1.25 ± 0.06 mm2/s) and lowest in the pons (1.11 ± 0.05 mm2/s). Thalamus and BG showed intermediate values (1.25 ± 0.04 mm2/s). Brainstem, cerebellar hemisphere and thalamus showed a linear negative correlation with gestational age. Supratentorial areas revealed an increase in ADC values, followed by a decrease after the 30th GW. This study provides a normative data set that allows insights in the normal fetal brain maturation in utero, which has not yet been observed in previous studies on premature babies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Larroche JC (1981) Morphological criteria of central nervous system development in the human foetus. J Neuroradiol 2:93–108

    Google Scholar 

  2. Girard N, Raybaud C, Poncet M (1995) In vivo MR study of brain maturation in normal fetuses. AJNR Am J Neuroradiol 2:407–413

    Google Scholar 

  3. Girard N, Raybaud C, Gambarelli D, Figarella-Branger D (2001) Fetal brain MR imaging. Magn Reson Imaging Clin N Am 9:19–56, vii

    PubMed  CAS  Google Scholar 

  4. Fogliarini C, Chaumoitre K, Chapon F, Fernandez C, Levrier O, Figarella-Branger D, Girard N (2005) Assessment of cortical maturation with prenatal MRI. Part I: Normal cortical maturation. Eur Radiol 15:1671–1685

    Article  PubMed  Google Scholar 

  5. Fogliarini C, Chaumoitre K, Chapon F, Fernandez C, Levrier O, Figarella-Branger D, Girard N (2005) Assessment of cortical maturation with prenatal MRI: part II: abnormalities of cortical maturation. Eur Radiol 15:1781–1789

    Article  PubMed  Google Scholar 

  6. Kucharczyk W, Macdonald PM, Stanisz GJ, Henkelman RM (1994) Relaxivity and magnetization transfer of white matter lipids at MR imaging: importance of cerebrosides and pH. Radiology 2:521–529

    Google Scholar 

  7. Kostovic I, Judas M, Rados M, Hrabac P (2002) Laminar organization of the human fetal cerebrum revealed by histochemical markers and magnetic resonance imaging. Cereb Cortex 5:536–544

    Article  Google Scholar 

  8. Engelbrecht V, Scherer A, Rassek M, Witsack HJ, Modder U (2002) Diffusion-weighted MR imaging in the brain in children: findings in the normal brain and in the brain with white matter diseases. Radiology 2:410–418

    Article  Google Scholar 

  9. Lovblad KO, Schneider J, Ruoss K, Steinlin M, Fusch C, Schroth G (2003) Isotropic apparent diffusion coefficient mapping of postnatal cerebral development. Neuroradiology 6:400–403

    Article  Google Scholar 

  10. Mukherjee P, Miller JH, Shimony JS, Conturo TE, Lee BC, Almli CR, McKinstry RC (2001) Normal brain maturation during childhood: developmental trends characterized with diffusion-tensor MR imaging. Radiology 2:349–358

    Article  Google Scholar 

  11. Schneider JF, Il’yasov KA, Hennig J, Martin E (2004) Fast quantitative diffusion-tensor imaging of cerebral white matter from the neonatal period to adolescence. Neuroradiology 4:258–266

    Article  Google Scholar 

  12. Prayer D, Barkovich AJ, Kirschner DA, Prayer LM, Roberts TP, Kucharczyk J, Moseley ME (2001) Visualization of nonstructural changes in early white matter development on diffusion-weighted MR images: evidence supporting premyelination anisotropy. AJNR Am J Neuroradiol 8:1572–1576

    Google Scholar 

  13. Wimberger DM, Roberts TP, Barkovich AJ, Prayer LM, Moseley ME, Kucharczyk J (1995) Identification of “premyelination” by diffusion-weighted MRI. J Comput Assist Tomogr 1:28–33

    Article  Google Scholar 

  14. Morriss MC, Zimmerman RA, Bilaniuk LT, Hunter JV, Haselgrove JC (1999) Changes in brain water diffusion during childhood. Neuroradiology 12:929–934

    Article  Google Scholar 

  15. Mukherjee P, Miller JH, Shimony JS, Philip JV, Nehra D, Snyder AZ, Conturo TE, Neil JJ, McKinstry RC (2002) Diffusion-tensor MR imaging of gray and white matter development during normal human brain maturation. AJNR Am J Neuroradiol 9:1445–1456

    Google Scholar 

  16. Neil J, Miller J, Mukherjee P, Huppi PS (2002) Diffusion tensor imaging of normal and injured developing human brain-a technical review. NMR Biomed 7–8:543–552

    Article  Google Scholar 

  17. Neil JJ, Shiran SI, McKinstry RC, Schefft GL, Snyder AZ, Almli CR, Akbudak E, Aronovitz JA, Miller JP, Lee BC, Conturo TE (1998) Normal brain in human newborns: apparent diffusion coefficient and diffusion anisotropy measured by using diffusion tensor MR imaging. Radiology 1:57–66

    Article  Google Scholar 

  18. Takeda K, Nomura Y, Sakuma H, Tagami T, Okuda Y, Nakagawa T (1997) MR assessment of normal brain development in neonates and infants: comparative study of T1- and diffusion-weighted images. J Comput Assist Tomogr 1:1–7

    Article  Google Scholar 

  19. Righini A, Bianchini E, Parazzini C, Gementi P, Ramenghi L, Baldoli C, Nicolini U, Mosca F, Triulzi F (2003) Apparent diffusion coefficient determination in normal fetal brain: a prenatal MR imaging study. AJNR Am J Neuroradiol 5:799–804

    Google Scholar 

  20. Huppi PS, Warfield S, Kikinis R, Barnes PD, Zientara GP, Jolesz FA, Tsuji MK, Volpe JJ (1998) Quantitative magnetic resonance imaging of brain development in premature and mature newborns. Ann Neurol 2:224–235

    Article  Google Scholar 

  21. Zelenina M, Zelenin S, Aperia A (2005) Water channels (aquaporins) and their role for postnatal adaptation. Pediatr Res 57(5 Pt 2):47R–53R

    Article  PubMed  Google Scholar 

  22. Rozeik C, Von Keyserlingk D (1987) The sequence of myelination in the brainstem of the rat monitored by myelin basic protein immunohistochemistry. Brain Res 2:183–190

    Google Scholar 

  23. Dubois J, Hertz-Pannier L, Dehaene-Lambertz G, Cointepas Y, Le Bihan D (2006) Assessment of the early organization and maturation of infants’ cerebral white matter fiber bundles: a feasibility study using quantitative diffusion tensor imaging and tractography. Neuroimage 4:1121–1132

    Article  Google Scholar 

  24. Jakovcevski I, Zecevic N (2005) Sequence of oligodendrocyte development in the human fetal telencephalon. Glia 4:480–491

    Article  Google Scholar 

  25. Huppi PS, Maier SE, Peled S, Zientara GP, Barnes PD, Jolesz FA, Volpe JJ (1998) Microstructural development of human newborn cerebral white matter assessed in vivo by diffusion tensor magnetic resonance imaging. Pediatr Res 4:584–590

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. Schneider.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, J.F., Confort-Gouny, S., Le Fur, Y. et al. Diffusion-weighted imaging in normal fetal brain maturation. Eur Radiol 17, 2422–2429 (2007). https://doi.org/10.1007/s00330-007-0634-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-007-0634-x

Keywords

Navigation