Skip to main content
Log in

MR angiography with blood pool contrast agents

  • Magnetic Resonance
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Contrast-enhanced magnetic resonance angiography (CE-MRA) with standard extracellular contrast material is well established for vascular imaging. Recently, the first blood pool contrast agent (BPA) has become clinically available. This paper reviews characteristics and classification of BPA as well as first clinical experience in various vascular territories. BPAs comprise gadolinium-based compounds, synthetic compounds, and ultrasmall superparamagnetic iron-oxide (USPIO) particles. Such BPAs are retained in blood with a prolonged time-window of enhancement as compared to extracellular gadolinium chelates. Promising results from USPIO at first-pass and steady-state angiography have been published, but no USPIO is approved yet. Gadofosveset is the first clinically approved BPA. After bolus injection, gadofosveset binds noncovalently to serum-albumine, thus enhancing relaxivity. First published results from carotid, coronary, renal, and peripheral angiography are encouraging; particularly helpful is prolonged enhancement during steady state. More BPAs have been clinically evaluated, but no approval has been granted. Bolus-injectable BPAs allow for first-pass CE-MRA similar to standard extracellular contrast media, but with higher relaxivity, allowing lower doses and reduced injection rates. An additional feature of BPA is the steady-state phase with a broad time window enabling high-resolution angiography or double-gated angiography of coronary arteries to compensate for the complex motion pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Prince MR, Meaney JF (2006) Expanding role of MR angiography in clinical practice. Eur Radiol 16(Suppl 2):B3–B8, Feb

    PubMed  Google Scholar 

  2. Sadowski EA, Bennett LK, Chan MR, Wentland AL, Garrett AL, Garrett RW, Djamali A (2007) Nephrogenic systemic fibrosis: risk factors and incidence estimation. Radiology 243(1):148–157

    PubMed  Google Scholar 

  3. Thomsen HS (2006) Nephrogenic systemic fibrosis: a serious late adverse reaction to gadodiamide. Eur Radiol 16(12):2619–2621, Dec

    Article  PubMed  Google Scholar 

  4. Choyke PL, Dwyer AJ, Knopp MV (2003) Functional tumor imaging with dynamic contrast-enhanced magnetic resonance imaging. J Magn Reson Imaging 17(5):509–520, May

    Article  PubMed  Google Scholar 

  5. Weissleder R, Mahmood U (2001) Molecular imaging. Radiology 219(2):316–333, Review, May

    PubMed  CAS  Google Scholar 

  6. Daldrup-Link HE, Kaiser A, Helbich T, Werner M, Bjornerud A, Link TM, Rummeny EJ (2003) Macromolecular contrast medium (feruglose) versus small molecular contrast medium (gadopentetate) enhanced magnetic resonance imaging: differentiation of benign and malignant breast lesions. Acad Radiol 10(11):1237–1246, Nov

    Article  PubMed  Google Scholar 

  7. Allkemper T, Bremer C, Matuszewski L, Ebert W, Reimer P (2002) Contrast-enhanced blood-pool MR angiography with optimized iron oxides: effect of size and dose on vascular contrast enhancement in rabbits. Radiology 223(2):432–438, May

    Article  PubMed  Google Scholar 

  8. Brasch RC (1991) Rationale and applications for macromolecular Gd-based contrast agents. Magn Reson Med 22(2):282–287, Dec

    Article  PubMed  CAS  Google Scholar 

  9. Schmiedl U, Brasch RC, Ogan MD, Moseley ME (1990) Albumin labeled with Gd-DTPA. An intravascular contrast-enhancing agent for magnetic resonance blood pool and perfusion imaging. Acta Radiol Suppl 374:99–102

    PubMed  CAS  Google Scholar 

  10. Lauffer RB, Parmelee DJ, Dunham SU, Ouellet HS, Dolan RP, Witte S, McMurry TJ, Walovitch RC (1998) MS-325: albumin-targeted contrast agent for MR angiography. Radiology 207:529–538

    PubMed  CAS  Google Scholar 

  11. Perreault P, Edelman MA, Baum RA, Yucel EK, Weisskoff RM, Shamsi K, Mohler ER (2003) Angiography with gadofosveset trisodium for peripheral vascular disease: phase II trial. Radiology 229:811–820

    Article  PubMed  Google Scholar 

  12. Kobayashi H, Kawamoto S, Jo SK, Bryant HL Jr, Brechbiel MW, Star RA (2003) Macromolecular MRI contrast agents with small dendrimers: pharmacokinetic differences between sizes and cores. Bioconjug Chem 14(2):388–394, Mar-Apr

    Article  PubMed  CAS  Google Scholar 

  13. Herborn CU, Barkhausen J, Paetsch I, Hunold P, Mahler M, Shamsi K, Nagel E (2003) Coronary arteries: contrast-enhanced MR imaging with SH L 643A-experience in 12 volunteers. Radiology 229(1):217–223, Oct

    Article  PubMed  Google Scholar 

  14. Burtea C, Laurent S, Colet JM, Vander Elst L, Muller RN (2003) Development of new glucosylated derivatives of gadolinium diethylenetriaminepentaacetic for magnetic resonance angiography. Invest Radiol 38(6):320–333, Jun

    Article  PubMed  CAS  Google Scholar 

  15. Baxter AB, Melnikoff S, Stites DP, Brasch RC (1991) AUR Memorial Award 1991. Immunogenicity of gadolinium-based contrast agents for magnetic resonance imaging. Induction and characterization of antibodies in animals. Invest Radiol 26(12):1035–1040, Dec

    Article  PubMed  CAS  Google Scholar 

  16. Knopp MV, Schoenberg SO, Rehm C, Floemer F, von Tengg-Kobligk H, Bock M, Hentrich HR (2002) Assessment of gadobenate dimeglumine for magnetic resonance angiography: phase I studies. Invest Radiol 37(12):706–715, Dec

    Article  PubMed  CAS  Google Scholar 

  17. Tombach B, Reimer P, Mahler M, Ebert W, Pering C, Heindel W (2002) First-pass and equilibrium phase MRA following intravenous bolus injection of SH U 555 C: phase I clinical trial in elderly volunteers with risk factors for arterial vascular disease. Acad Radiol 9(Suppl 2):S425–S427, Aug

    Article  PubMed  Google Scholar 

  18. Wacker FK, Reither K, Ebert W, Wendt M, Lewin JS, Wolf KJ (2003) MR image-guided endovascular procedures with the ultrasmall superparamagnetic iron oxide SH U 555 C as an intravascular contrast agent: study in pigs. Radiology 226(2):459–464, Feb

    Article  PubMed  Google Scholar 

  19. Bremerich J, Roberts TP, Wendland MF, Wyttenbach R, Arheden H, Reddy GP, Shafaghi N, Higgins CB, Saeed M (2000) Three-dimensional MR imaging of pulmonary vessels and parenchyma with NC100150 injection (Clariscan). Magn Reson Imaging 11(6):622–628, Jun

    Article  CAS  Google Scholar 

  20. Taupitz M, Wagner S, Schnorr J, Kravec I, Pilgrimm H, Bergmann-Fritsch H, Hamm B (2004) Phase I clinical evaluation of citrate-coated monocrystalline very small superparamagnetic iron oxide particles as a new contrast medium for magnetic resonance imaging. Invest Radiol 39(7):394–405, 2004 Jul. Erratum in: Invest Radiol 39(10):625, Oct

    Article  PubMed  CAS  Google Scholar 

  21. Schnorr J, Wagner S, Abramjuk C, Wojner I, Schink T, Kroencke TJ, Schellenberger E, Hamm B, Pilgrimm H, Taupitz M (2004) Comparison of the iron oxide-based blood-pool contrast medium VSOP-C184 with gadopentetate dimeglumine for first-pass magnetic resonance angiography of the aorta and renal arteries in pigs. Invest Radiol 39(9):546–553, Sep

    Article  PubMed  CAS  Google Scholar 

  22. Tombach B, Reimer P, Bremer C, Allkemper T, Engelhardt M, Mahler M, Ebert W, Heindel W (2004) First-pass and equilibrium-MRA of the aortoiliac region with a superparamagnetic iron oxide blood pool MR contrast agent (SH U 555 C): results of a human pilot study. NMR Biomed 17(7):500–506, Nov

    Article  PubMed  Google Scholar 

  23. Lawaczeck R, Bauer H, Frenzel T, Hasegawa M, Ito Y, Kito K, Miwa N, Tsutsui H, Vogler H, Weinmann HJ (1997) Magnetic iron oxide particles coated with carboxydextran for parenteral administration and liver contrasting. Pre-clinical profile of SH U555A. Acta Radiol 38(4 Pt 1):584–597, Jul

    Article  PubMed  CAS  Google Scholar 

  24. Reimer P, Bremer C, Allkemper T, Engelhardt M, Mahler M, Ebert W, Tombach B (2004) Myocardial perfusion and MR angiography of chest with SH U 555 C: results of placebo-controlled clinical phase i study. Radiology 231(2):474–481, May

    Article  PubMed  Google Scholar 

  25. Wyttenbach R, Gianella S, Alerci M, Braghetti A, Cozzi L, Gallino A (2003) Prospective blinded evaluation of Gd-DOTA- versus Gd-BOPTA-enhanced peripheral MR angiography, as compared with digital subtraction angiography. Radiology 227(1):261–269, Apr. Epub 2003 Feb 28

    Article  PubMed  Google Scholar 

  26. Allkemper T, Heindel W, Kooijman H, Ebert W, Tombach B (2006) Effect of field strengths on magnetic resonance angiography: comparison of an ultrasmall superparamagnetic iron oxide blood-pool contrast agent and gadopentetate dimeglumine in rabbits at 1.5 and 3.0 tesla. Invest Radiol 41(2):97–104, Feb

    Article  PubMed  Google Scholar 

  27. Ogan MD, Schmiedl U, Moseley ME, Grodd W, Paajanen H, Brasch RC (1987) Albumin labeled with Gd-DTPA. An intravascular contrast-enhancing agent for magnetic resonance blood pool imaging: preparation and characterization. Invest Radiol 23:665–671

    Article  Google Scholar 

  28. Zheng J, Carr J, Harris K, Saker MB, Cavagna FM, Maggioni F, Laub G, Li D, Finn JP (2001) Three-dimensional MR pulmonary perfusion imaging and angiography with an injection of a new blood pool contrast agent B-22956/1. J Magn Reson Imaging 14(4):425–432, Oct

    Article  PubMed  CAS  Google Scholar 

  29. Cavagna FM, Zheng J, Lorusso V, Maggioni F, Li D, Finn PJ (1999) New proton binding Gd chelate with high vascular containment for MR coronary angiography. J Cardio Magn Reson 1:387–388

    Google Scholar 

  30. Clarke SE, Weinmann HJ, Dai E, Lucas AR, Rutt BK (2000) Comparison of two blood pool contrast agents for 0.5-T MR angiography: experimental study in rabbits. Radiology 214(3):787–794, Mar

    PubMed  CAS  Google Scholar 

  31. Misselwitz B, Schmitt-Willich H, Ebert W, Frenzel T, Weinmann HJ (2001) Pharmacokinetics of Gadomer-17, a new dendritic magnetic resonance contrast agent. MAGMA 12(2–3):128–134, May

    Article  PubMed  CAS  Google Scholar 

  32. Shamsi K, Yucel EK, Chamberlin P (2006) A summary of safety of gadofosveset (MS-325) at 0.03 mmol/kg body weight dose: phase II and phase III clinical trials data. Invest Radiol 41(11):822–830, Nov

    Article  PubMed  CAS  Google Scholar 

  33. Manning WJ, Li W, Edelman RR (1993) A preliminary report comparing magnetic resonance coronary angiography with conventional angiography. N Engl J Med 328(12):828–832, Mar 25

    Article  PubMed  CAS  Google Scholar 

  34. Stuber M, Botnar RM, Danias PG, McConnell MV, Kissinger KV, Yucel EK, Manning WJ (1999) Contrast agent-enhanced, free-breathing, three-dimensional coronary magnetic resonance angiography. J Magn Reson Imaging 10(5):790–799, Nov

    Article  PubMed  CAS  Google Scholar 

  35. Herborn CU, Schmidt M, Bruder O, Nagel E, Shamsi K, Barkhausen J (2004) MR coronary angiography with SH L 643 A: initial experience in patients with coronary artery disease. Radiology 233(2):567–573, Nov

    Article  PubMed  Google Scholar 

  36. Meissner OA, Rieger J, Weber C, Siebert U, Steckmeier B, Reiser MF, Schoenberg SO (2005) Critical limb ischemia: hybrid MR angiography compared with DSA. Radiology 235:308–318

    Article  PubMed  Google Scholar 

  37. Bilecen D, Jager KA, Aschwanden M, Heidecker HG, Schulte AC, Bongartz G (2004) Cuff-compression of the proximal calf to reduce venous contamination in contrast-enhanced stepping-table magnetic resonance angiography. Acta Radiol 45:510–515

    Article  PubMed  CAS  Google Scholar 

  38. Nikolaou K, Kramer H, Grosse C, Clevert D, Dietrich O, Hartmann M, Chamberlin P, Assmann S, Reiser MF, Schoenberg SO (2006) High-spatial-resolution multistation MR angiography with parallel imaging and blood pool contrast agent: initial experience. Radiology 241(3):861–872, Dec. Epub 2006 Oct 10

    Article  PubMed  Google Scholar 

  39. Vasbinder GB, Nelemans PJ, Kessels AG, Kroon AA, de Leeuw PW, van Engelshoven JM (2001) Diagnostic tests for renal artery stenosis in patients suspected of having renovascular hypertension: a meta-analysis. Ann Intern Med 135(6):401–411, Sep 18

    PubMed  CAS  Google Scholar 

  40. Vasbinder GB, Nelemans PJ, Kessels AG et al (2004) Accuracy of computed tomographic angiography and magnetic resonance angiography for diagnosing renal artery stenosis. Ann Intern Med 141:674–682

    PubMed  Google Scholar 

  41. Wilson GJ, Eubank WB, Vasbinder GB, Kessels AG, Hoogeveen RM, Muthupillai R, Maki JH (2006) Utilizing SENSE to reduce scan duration in high-resolution contrast-enhanced renal MR angiography. J Magn Reson Imaging 24(4):873–879, Oct

    Article  PubMed  Google Scholar 

  42. Schoenberg SO, Rieger J, Weber CH, Michaely HJ, Waggershauser T, Ittrich C, Dietrich O, Reiser MF (2005) High-spatial-resolution MR angiography of renal arteries with integrated parallel acquisitions: comparison with digital subtraction angiography and US. Radiology 235(2):687–698, May

    Article  PubMed  Google Scholar 

  43. Bluemke DA, Stillman AE, Bis KG, Grist TM, Baum RA, D’Agostino R, Malden ES, Pierro JA, Yucel EK (2001) Carotid MR angiography: phase II study of safety and efficacy for MS-325. Radiology 219(1):114–122, Apr

    PubMed  CAS  Google Scholar 

  44. Rohrer M, Bauer H, Mintorovitch J, Requardt M, Weinmann HJ (2005) Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest Radiol 40:715–724

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Bremerich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bremerich, J., Bilecen, D. & Reimer, P. MR angiography with blood pool contrast agents. Eur Radiol 17, 3017–3024 (2007). https://doi.org/10.1007/s00330-007-0712-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-007-0712-0

Keywords

Navigation