Skip to main content
Log in

Cranial CT with 64-, 16-, 4- and single-slice CT systems–comparison of image quality and posterior fossa artifacts in routine brain imaging with standard protocols

  • Neuro
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Posterior fossa artifacts constitute a characteristic limitation of cranial CT. To identify practical benefits and drawbacks of newer CT systems with reduced collimation in routine cranial imaging, we aimed to investigate image quality, posterior fossa artifacts and parenchymal delineation in non-enhanced CT (NECT) with 1-, 4-, 16- and 64-slice scanners using standard scan protocols. We prospectively enrolled 25 consecutive patients undergoing NECT on a 64-slice CT. Three groups with 25 patients having undergone NECT on 1-, 4- and 16-slice CT machines were matched regarding age and sex. Standard routine CT parameters were used on each CT system with helical acquisition in the posterior fossa; the parameters varied regarding collimation and radiation dose. Three blinded readers independently assessed the cases regarding image quality, infra- and supratentorial artifacts and delineation of brain parenchymal structures on a five-point ordinal scale. Reading orders were randomized. A proportional odds model that accounted for the correlated nature of the data was fit using generalized estimating equations. Posterior fossa artifacts were significantly reduced, and the delineation of infratentorial brain structures was significantly improved with the thinner collimation used for the newer CT systems (p<0.001). No significant differences were observed for midbrain structures (p>0.5). The thinner collimation available on modern CT systems leads to reduced posterior fossa artifacts and to a better delineation of brain parenchyma in the posterior fossa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hu H, He HD, Foley WD, Fox SH (2000) Four multidetector-row helical CT: image quality and volume coverage speed. Radiology 215:55–62

    PubMed  CAS  Google Scholar 

  2. Klingenbeck-Regn K, Schaller S, Flohr T, Ohnesorge B, Kopp AF, Baum U (1999) Subsecond multi-slice computed tomography: basics and applications. Eur J Radiol 31:110–124

    Article  PubMed  CAS  Google Scholar 

  3. McCollough CH, Zink FE (1999) Performance evaluation of a multi-slice CT system. Med Phys 26:2223–2230

    Article  PubMed  CAS  Google Scholar 

  4. Flohr TG, Stierstorfer K, Ulzheimer S, Bruder H, Primak AN, McCollough CH (2005) Image reconstruction and image quality evaluation for a 64-slice CT scanner with z-flying focal spot. Med Phys 32:2536–2547

    Article  PubMed  CAS  Google Scholar 

  5. Flohr T, Stierstorfer K, Raupach R, Ulzheimer S, Bruder H (2004) Performance evaluation of a 64-slice CT system with z-flying focal spot. Rofo 176:1803–1810

    PubMed  CAS  Google Scholar 

  6. Flohr TG, Schaller S, Stierstorfer K, Bruder H, Ohnesorge BM, Schoepf UJ (2005) Multi-detector row CT systems and image-reconstruction techniques. Radiology 235:756–773

    Article  PubMed  Google Scholar 

  7. Napoli A, Fleischmann D, Chan FP et al (2004) Computed tomography angiography: state-of-the-art imaging using multidetector-row technology. J Comput Assist Tomogr 28(Suppl 1):S32–S45

    Article  PubMed  Google Scholar 

  8. Fleischmann D, Rubin GD, Paik DS et al (2000) Stair-step artifacts with single versus multiple detector-row helical CT. Radiology 216:185–196

    PubMed  CAS  Google Scholar 

  9. Bahner ML, Reith W, Zuna I, Engenhart-Cabillic R, van Kaick G (1998) Spiral CT vs incremental CT: is spiral CT superior in imaging of the brain? Eur Radiol 8:416–420

    Article  PubMed  CAS  Google Scholar 

  10. Cody DD, Stevens DM, Ginsberg LE (2005) Multi-detector row CT artifacts that mimic disease. Radiology 236:756–761

    Article  PubMed  Google Scholar 

  11. Yeoman LJ, Howarth L, Britten A, Cotterill A, Adam EJ (1992) Gantry angulation in brain CT: dosage implications, effect on posterior fossa artifacts, and current international practice. Radiology 184:113–116

    PubMed  CAS  Google Scholar 

  12. Rozeik C, Kotterer O, Preiss J, Schutz M, Dingler W, Deininger HK (1991) Cranial CT artifacts and gantry angulation. J Comput Assist Tomogr 15:381–386

    Article  PubMed  CAS  Google Scholar 

  13. Dorenbeck U, Finkenzeller T, Hill K, Feuerbach S, Link J (2000) Volume-artifact reduction technique by spiral CT in the anterior, middle and posterior cranial fossae. Comparison with conventional cranial CT. Rofo 172:342–345

    PubMed  CAS  Google Scholar 

  14. Jones TR, Kaplan RT, Lane B, Atlas SW, Rubin GD (2001) Single- versus multi-detector row CT of the brain: quality assessment. Radiology 219:750–755

    PubMed  CAS  Google Scholar 

  15. van Straten M, Venema HW, Majoie CB, Freling NJ, Grimbergen CA, den Heeten GJ (2007) Image quality of multisection CT of the brain: thickly collimated sequential scanning versus thinly collimated spiral scanning with image combining. Am J Neuroradiol 28:421–427

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birgit Ertl-Wagner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ertl-Wagner, B., Eftimov, L., Blume, J. et al. Cranial CT with 64-, 16-, 4- and single-slice CT systems–comparison of image quality and posterior fossa artifacts in routine brain imaging with standard protocols. Eur Radiol 18, 1720–1726 (2008). https://doi.org/10.1007/s00330-008-0937-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-008-0937-6

Keywords

Navigation