Skip to main content
Log in

Reference values for quantitative left ventricular and left atrial measurements in cardiac computed tomography

  • Cardiac
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

To assess reference values for left ventricular (LV) and left atrial (LA) dimensions, global LV function, and LV-myocardial mass for cardiac CT. We examined 120 subjects undergoing a coronary angiography using 64-slice and dual-source CT. All individuals had a low cardiovascular risk, normal ECG, negative biomarkers, and a normal cardiac CT examination. All subjects had a negative medical history of cardiovascular disease both on admission and at clinical 6-month follow-up. The following measurements were obtained: septal wall thickness (SWT), posterior wall thickness (PWT), LV inner diameter (LVID), LA anterior posterior diameter (LADsys), end-systolic volume (ESV), and end-diastolic volume (EDV), LV-myocardial mass (LVMM). We found significant gender-related differences for all LV dimensions (SWTsys, SWTdia,PWTsys,PWTdia,LVIDsys,LVIDdia). LADsys showed no significant difference between males and females. Significant differences were found for global LV functional parameters including ESV, EDV, and SV, whereas no significant differences were found for the EF. LV-myocardial mass parameters showed significant gender-related differences. No significant correlation was found between any of these parameters and age. All data were transferred to percentile ranks. This study provides gender-related reference values and percentiles for LV and LA quantitative measurements for cardiac CT and should assist in interpreting results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shah PK, Maddahi J, Staniloff HM et al (1986) Variable spectrum and prognostic implications of left and right ventricular ejection fractions in patients with and without clinical heart failure after acute myocardial infarction. Am J Cardiol 58:387–393

    Article  PubMed  CAS  Google Scholar 

  2. Schocken DD, Arrieta MI, Leaverton PE, Ross EA (1992) Prevalence and mortality rate of congestive heart failure in the United States. J Am Coll Cardiol 20:301–306

    Article  PubMed  CAS  Google Scholar 

  3. Leschka S, Alkadhi H, Plass A et al (2005) Accuracy of MSCT coronary angiography with 64-slice technology: first experience. Eur Heart J 26:1482–1487

    Article  PubMed  Google Scholar 

  4. Raff GL, Gallagher MJ, O’Neill WW, Goldstein JA (2005) Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography. J Am Coll Cardiol 46:552–557

    Article  PubMed  Google Scholar 

  5. Scheffel H, Alkadhi H, Plass A et al (2006) Accuracy of dual-source CT coronary angiography: First experience in a high pre-test probability population without heart rate control. Eur Radiol 16:2739–2747

    Article  PubMed  Google Scholar 

  6. Nikolaou K, Knez A, Rist C et al (2006) Accuracy of 64-MDCT in the diagnosis of ischemic heart disease. AJR Am J Roentgenol 187:111–117

    Article  PubMed  Google Scholar 

  7. Mollet NR, Cademartiri F, van Mieghem CA et al (2005) High-resolution spiral computed tomography coronary angiography in patients referred for diagnostic conventional coronary angiography. Circulation 112:2318–2323

    Article  PubMed  Google Scholar 

  8. Fox K, Garcia MA, Ardissino D et al (2006) Guidelines on the management of stable angina pectoris: executive summary: the Task Force on the Management of Stable Angina Pectoris of the European Society of Cardiology. Eur Heart J 27:1341–1381

    Article  PubMed  Google Scholar 

  9. Budoff MJ, Achenbach S, Blumenthal RS et al (2006) Assessment of coronary artery disease by cardiac computed tomography: a scientific statement from the American Heart Association Committee on Cardiovascular Imaging and Intervention, Council on Cardiovascular Radiology and Intervention, and Committee on Cardiac Imaging, Council on Clinical Cardiology. Circulation 114:1761–1791

    Article  PubMed  Google Scholar 

  10. Dewey M, Muller M, Teige F et al (2006) Multisegment and halfscan reconstruction of 16-slice computed tomography for assessment of regional and global left ventricular myocardial function. Invest Radiol 41:400–409

    Article  PubMed  Google Scholar 

  11. Juergens KU, Grude M, Maintz D et al (2004) Multi-detector row CT of left ventricular function with dedicated analysis software versus MR imaging: initial experience. Radiology 230:403–410

    Article  PubMed  Google Scholar 

  12. Yamamuro M, Tadamura E, Kubo S et al (2005) Cardiac functional analysis with multi-detector row CT and segmental reconstruction algorithm: comparison with echocardiography, SPECT, and MR imaging. Radiology 234:381–390

    Article  PubMed  Google Scholar 

  13. Busch S, Johnson TR, Wintersperger BJ et al (2007) Quantitative assessment of left ventricular function with dual-source CT in comparison to cardiac magnetic resonance imaging: initial findings. Eur Radiol, E-published Oct 7, DOI 10.1007/s00330–007–0767-y

  14. Schwartzman D, Lacomis J, Wigginton WG (2003) Characterization of left atrium and distal pulmonary vein morphology using multidimensional computed tomography. J Am Coll Cardiol 41:1349–1357

    Article  PubMed  Google Scholar 

  15. Ilercil A, O’Grady MJ, Roman MJ et al (2001) Reference values for echocardiographic measurements in urban and rural populations of differing ethnicity: the Strong Heart Study. J Am Soc Echocardiogr 14:601–611

    Article  PubMed  CAS  Google Scholar 

  16. Devereux RB, Roman MJ, de Simone G et al (1997) Relations of left ventricular mass to demographic and hemodynamic variables in American Indians: the Strong Heart Study. Circulation 96:1416–1423

    PubMed  CAS  Google Scholar 

  17. Lang RM, Bierig M, Devereux RB et al (2006) Recommendations for chamber quantification. Eur J Echocardiogr 7:79–108

    Article  PubMed  Google Scholar 

  18. Alfakih K, Plein S, Thiele H et al (2003) Normal human left and right ventricular dimensions for MRI as assessed by turbo gradient echo and steady-state free precession imaging sequences. J Magn Reson Imaging 17:323–329

    Article  PubMed  Google Scholar 

  19. Clay S, Alfakih K, Radjenovic A et al (2006) Normal range of human left ventricular volumes and mass using steady state free precession MRI in the radial long axis orientation. Magma 19:41–45

    Article  PubMed  Google Scholar 

  20. Nikitin NP, Loh PH, de Silva R et al (2006) Left ventricular morphology, global and longitudinal function in normal older individuals: a cardiac magnetic resonance study. Int J Cardiol 108:76–83

    Article  PubMed  Google Scholar 

  21. Sandstede J, Lipke C, Beer M et al (2000) Age- and gender-specific differences in left and right ventricular cardiac function and mass determined by cine magnetic resonance imaging. Eur Radiol 10:438–442

    Article  PubMed  CAS  Google Scholar 

  22. Juergens KU, Fischbach R (2006) Left ventricular function studied with MDCT. Eur Radiol 16:342–357

    Article  PubMed  Google Scholar 

  23. Wilson PW, D’Agostino RB, Levy D et al (1998) Prediction of coronary heart disease using risk factor categories. Circulation 97:1837–1847

    PubMed  CAS  Google Scholar 

  24. Hoff JA, Chomka EV, Krainik AJ et al (2001) Age and gender distributions of coronary artery calcium detected by electron beam tomography in 35,246 adults. Am J Cardiol 87:1335–1339

    Article  PubMed  CAS  Google Scholar 

  25. Leschka S, Scheffel H, Desbiolles L et al (2007) Image quality and reconstruction intervals of dual-source CT coronary angiography: recommendations for ECG-pulsing windowing. Invest Radiol 42:543–549

    Article  PubMed  Google Scholar 

  26. Flohr TG, McCollough CH, Bruder H et al (2006) First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 16:256–268

    Article  PubMed  Google Scholar 

  27. Hausleiter J, Meyer T, Hadamitzky M et al (2006) Radiation dose estimates from cardiac multislice computed tomography in daily practice: impact of different scanning protocols on effective dose estimates. Circulation 113:1305–1310

    Article  PubMed  Google Scholar 

  28. Stolzmann P, Scheffel H, Schertler T et al (2007) Radiation dose estimates in dual-source computed tomography coronary angiography. Eur Radiol 2007 Oct 2; [Epub ahead of print] DOI 10.1007/s00330–007–0786–8

  29. Du Bois D, Du Bois EF (1989) A formula to estimate the approximate surface area if height and weight be known. 1916. Nutrition 5:303–311

    PubMed  CAS  Google Scholar 

  30. St John Sutton M, Pfeffer MA, Moye L et al (1997) Cardiovascular death and left ventricular remodeling two years after myocardial infarction: baseline predictors and impact of long-term use of captopril: information from the Survival and Ventricular Enlargement (SAVE) trial. Circulation 96:3294–3299

    PubMed  CAS  Google Scholar 

  31. Milani RV, Lavie CJ, Mehra MR et al (2006) Left ventricular geometry and survival in patients with normal left ventricular ejection fraction. Am J Cardiol 97:959–963

    Article  PubMed  Google Scholar 

  32. Tsang TS, Barnes ME, Gersh BJ, Bailey KR, Seward JB (2002) Left atrial volume as a morphophysiologic expression of left ventricular diastolic dysfunction and relation to cardiovascular risk burden. Am J Cardiol 90:1284–1289

    Article  PubMed  Google Scholar 

  33. Kizer JR, Bella JN, Palmieri V et al (2006) Left atrial diameter as an independent predictor of first clinical cardiovascular events in middle-aged and elderly adults: the Strong Heart Study (SHS). Am Heart J 151:412–418

    Article  PubMed  Google Scholar 

  34. Bonow RO, Carabello BA, Kanu C et al (2006) ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing committee to revise the 1998 Guidelines for the Management of Patients With Valvular Heart Disease): developed in collaboration with the Society of Cardiovascular Anesthesiologists: endorsed by the Society for Cardiovascular Angiography and Interventions and the Society of Thoracic Surgeons. Circulation 114:e84–e231

    Article  PubMed  Google Scholar 

  35. Rodkey SM, Ratliff NB, Young JB (1998) Textbook of Cardiovascular Medicine. Lippincott-Raven, Philadelphia, PA

    Google Scholar 

  36. White HD, Norris RM, Brown MA et al (1987) Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation 76:44–51

    PubMed  CAS  Google Scholar 

  37. Salm LP, Schuijf JD, de Roos A et al (2006) Global and regional left ventricular function assessment with 16-detector row CT: comparison with echocardiography and cardiovascular magnetic resonance. Eur J Echocardiogr 7:308–314

    Article  PubMed  Google Scholar 

  38. Mahnken AH, Bruder H, Suess C et al (2007) Dual-source computed tomography for assessing cardiac function: a phantom study. Invest Radiol 42:491–498

    Article  PubMed  Google Scholar 

  39. Verdecchia P, Schillaci G, Borgioni C et al (1998) Prognostic significance of serial changes in left ventricular mass in essential hypertension. Circulation 97:48–54

    PubMed  CAS  Google Scholar 

  40. Raman SV, Shah M, McCarthy B, Garcia A, Ferketich AK (2006) Multi-detector row cardiac computed tomography accurately quantifies right and left ventricular size and function compared with cardiac magnetic resonance. Am Heart J 151:736–744

    Article  PubMed  Google Scholar 

  41. Gardin JM, Savage DD, Ware JH, Henry WL (1987) Effect of age, sex, and body surface area on echocardiographic left ventricular wall mass in normal subjects. Hypertension 9:II36–II39

    PubMed  CAS  Google Scholar 

  42. Dannenberg AL, Levy D, Garrison RJ (1989) Impact of age on echocardiographic left ventricular mass in a healthy population (the Framingham Study). Am J Cardiol 64:1066–1068

    Article  PubMed  CAS  Google Scholar 

  43. Sievers B, Kirchberg S, Bakan A, Franken U, Trappe HJ (2004) Impact of papillary muscles in ventricular volume and ejection fraction assessment by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 6:9–16

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Center of Competence in Research, Computer-Aided and Image-Guided Medical Interventions of the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hatem Alkadhi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stolzmann, P., Scheffel, H., Leschka, S. et al. Reference values for quantitative left ventricular and left atrial measurements in cardiac computed tomography. Eur Radiol 18, 1625–1634 (2008). https://doi.org/10.1007/s00330-008-0939-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-008-0939-4

Keywords

Navigation