Skip to main content
Log in

Signal intensity of motor and sensory cortices on T2-weighted and FLAIR images: intraindividual comparison of 1.5T and 3T MRI

  • Neuro
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

We compared the signal intensity of motor and sensory cortices on T2-weighted and FLAIR images obtained at 3T and 1.5T. MR images of 101 consecutive neurologically normal patients who underwent both 1.5T and 3T MRI were retrospectively evaluated. The signal intensities of motor and sensory cortices were analyzed both visually and quantitatively in comparison with superior frontal cortex. On T2-weighted images, decreased signal intensity of the motor cortex was seen in 6 (32%) of 19 patients aged 61–70 years and 14 (48%) of 29 at 71 years and older at 3T, compared with only 1 (5%) and 2 (7%) at 1.5T, respectively. On FLAIR images, the decreased signal intensity in the motor cortex was also more frequently seen at 3T than at 1.5T. The mean CNRs of motor and sensory cortices were significantly higher at 3T than at 1.5T on both T2-weighted and FLAIR images. The decreased signal intensity in the motor cortex was frequently seen at 3T compared with 1.5T. Knowledge of the finding at 3T can help the recognition of abnormalities of the motor cortex caused by various pathologic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

FLAIR:

fluid-attenuated inversion recovery

SFC:

superior frontal cortex

SNR:

signal-to-noise ratio

FSE:

fast spin-echo

CNR:

contrast-to-noise ratio

ROI:

region of interest

References

  1. Hirai T, Korogi Y, Sakamoto Y et al (1996) T2 shortening in the motor cortex: effect of aging and cerebrovascular disease. Radiology 199:799–803

    PubMed  CAS  Google Scholar 

  2. Karaarslan E, Arslan A (2003) Perilorandic cortex of the normal brain: low signal intensity on Turbo FLAIR MR images. Radiology 227:538–541

    Article  PubMed  Google Scholar 

  3. Korogi Y, Hirai T, Komohara Y et al (1997) T2 shortening in the visual cortex: effect of aging and cerebrovascular disease. AJNR Am J Neuroradiol 18:711–714

    PubMed  CAS  Google Scholar 

  4. Hirai T, Korogi Y, Yoshizumi K et al (2000) Limbic lobe of the human brain: evaluation with Turbo Fluid-attenuated inversion-recovery MR imaging. Radiology 215:470–475

    PubMed  CAS  Google Scholar 

  5. Yoshiura T, Higano S, Rubio A et al (2000) Heschl and superior temporal gyri: low signal intensity of the cortex on T2-weighted MR images of the normal brain. Radiology 214:217–221

    PubMed  CAS  Google Scholar 

  6. Georgiades CS, Itoh R, Golay X et al (2001) MR imaging of the human brain at 1.5T: regional variations in transverse relaxation rates in the cerebral cortex. AJNR Am J Neuroradiol 22:1732–1737

    PubMed  CAS  Google Scholar 

  7. Alexander JA, Sheppard S, Davis PC et al (1996) Adult cerebrovascular disease: role of modified rapid fluid-attenuated inversion-recovery sequences. AJNR Am J Neuroradiol 17:1507–1513

    PubMed  CAS  Google Scholar 

  8. Oba H, Araki T, Ohtomo K et al (1993) Amyotrophic lateral sclerosis: T2 shortening in motor cortex at MR imaging. Radiology 189:843–846

    PubMed  CAS  Google Scholar 

  9. Imon Y, Yamaguchi S, Yamamura Y et al (1995) Low intensity areas observed on T2-weighted magnetic resonance imaging of the cerebral cortex in various neurological disease. J Neurol Sci 21:27–32

    Article  Google Scholar 

  10. Russo C, Smoker WRK, Kubal W (1997) Cortical and subcortical T2 shortening in multiple sclerosis. AJNR Am J Neuroradiol 18:124–126

    PubMed  CAS  Google Scholar 

  11. Miwa H, Kajimoto Y, Nakanishi I et al (2003) T2-low signal intensity in the cortex in multiple system atrophy. J Neurol Sci 211:85–88

    PubMed  Google Scholar 

  12. Trattnig S, Pinker K, Ba-Ssalamah A, Nobauer-Huhmann IM (2006) The optimal use of contrast agents at high field MRI. Eur Radiol 16:1280–1287

    Article  PubMed  Google Scholar 

  13. Schwindt W, Kugel H, Bachmann R et al (2003) Magnetic resonance imaging protocols for examination of the neurocranium at 3T. Eur Radiol 13:2170–2179

    Article  PubMed  CAS  Google Scholar 

  14. Morakkabati-Spitz N, Gieseke J, Kuhl C et al (2006) MRI of the pelvis at 3T: very high spatial resolution with sensitivity encoding and flip-angle sweep technique in clinically acceptable scan time. Eur Radiol 16:634–641

    Article  PubMed  Google Scholar 

  15. Lemke AJ, Alai-Omid M, Hengst SA, Kazi I, Felix R (2006) Eye imaging with a 3.0-T MRI using a surface coil - a study on volunteers and initial patients with uveal melanoma. Eur Radiol 16:1084–1086

    Article  PubMed  Google Scholar 

  16. Bachmann R, Reilmann R, Schwindt W, Kugel H, Heindel W, Kramer S (2006) FLAIR imaging for multiple sclerosis: a comparative MR study at 1.5 and 3.0 Tesla. Eur Radiol 16:915–921

    Article  PubMed  Google Scholar 

  17. Stehling C, Vieth V, Bachmann R et al (2007) High-resolution magnetic resonance imaging of the temporomandibular joint: image quality at 1.5 and 3.0 Tesla in volunteers. Invest Radiol 42:428–434

    Article  PubMed  Google Scholar 

  18. Schenck JF, Zimmerman EA (2004) High-field magnetic resonance imaging of brain iron: birth of a biomarker? NMR Biomed 17:433–445

    Article  PubMed  CAS  Google Scholar 

  19. Bizzi A, Brooks RA, Brunetti A et al (1990) Role of iron and ferritin in MR imaging of the brain: a study in primates, at different field strengths. Radiology 177:59–65

    PubMed  CAS  Google Scholar 

  20. Spatz H (1922) Uber den eisennachweis im gehirn, besonders in zentren des extrapyramidal-motorischen systems. Z Ges Neurol Psychiatry 77:261–390

    Article  CAS  Google Scholar 

  21. Hallgren B, Sourander P (1958) The effect of age on the non-haemin iron in the human brain. J Neurochem 3:41–51

    Article  PubMed  CAS  Google Scholar 

  22. Norbash AM, Glover GH, Enzmann DR (1992) Intracerebral lesion contrast with spin-echo and fast spin-echo pulse sequence. Radiology 185:661–665

    PubMed  CAS  Google Scholar 

  23. Welker KM, Tsuruda JS, Hadley JR et al (2001) Radio-frequency coil selection for MR imaging of the brain and skull base. Radiology 221:11–25

    Article  PubMed  CAS  Google Scholar 

  24. Stahl R, Dietrich O, Teipel SJ, Hampel H, Reiser MF, Schoenberg SO (2007) White matter damage in Alzheimer disease and mild cognitive impairment: assessment with diffusion-tensor MR imaging and parallel imaging techniques. Radiology 243:483–492

    Article  PubMed  Google Scholar 

  25. Sze G, Kawamura Y, Negishi C et al (1993) Fast spin-echo MR imaging of the cervical spine: influence of echo train length and echo spacing on image contrast and quality. AJNR Am J Neuroradiol 14:1203–1213

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Kamada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamada, K., Kakeda, S., Ohnari, N. et al. Signal intensity of motor and sensory cortices on T2-weighted and FLAIR images: intraindividual comparison of 1.5T and 3T MRI. Eur Radiol 18, 2949–2955 (2008). https://doi.org/10.1007/s00330-008-1069-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-008-1069-8

Keywords

Navigation