Skip to main content
Log in

MR imaging of late radiation therapy- and chemotherapy-induced injury: a pictorial essay

  • Neuro
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Radiation to the brain and adjuvant chemotherapy may produce late delayed changes from several months to years after treatment of intracranial malignancies with a reported prevalence of 5–24%. The pattern of treatment-related injury may vary from diffuse periventricular white matter lesions to focal or multifocal lesions. Differentiation of treatment-related injury from tumor progression/recurrence may be difficult with conventional MR imaging (MRI). With both disease processes, the characteristic but nonspecific imaging features are vasogenic edema, contrast enhancement, and mass effect. This pictorial essay presents MRI spectra of late therapy-induced injuries in the brain with a particular emphasis on radiation necrosis, the most common and severe form. Novel MRI techniques, such as diffusion-weighted imaging (DWI), proton MR spectroscopy (MRS), and perfusion MRI, improve the possibilities of better characterization of treatment-related changes. Advanced MRI techniques allow for the assessment of metabolism and physiology and may increase specificity for therapy-induced changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sheline GE, Wara WM, Smith V (1980) Therapeutic irradiation and brain injury. Int J Radiat Oncol Biol Phys 6:1215–1228

    CAS  PubMed  Google Scholar 

  2. Ruben JD, Dally M, Bailey M, Smith R, McLean CA et al (2006) Cerebral radiation necrosis: incidence, outcomes, and risk factors with emphasis on radiation parameters and chemotherapy. Int J Radiation Oncology Biol Phys 65:499–508

    Google Scholar 

  3. Johannesen TB, Lien HH, Hole KH, Lote K (2003) Radiological and clinical assessment of long-term brain tumour survivors after radiotherapy. Radiother Oncol 69:169–176

    Article  PubMed  Google Scholar 

  4. Marks JE, Baglan RJ, Prassad SC, Blank WF (1981) Cerebral radionecrosis: incidence and risk in relation to dose, time, fractionation and volume. Int J Radiat Oncol Biol Phys 7:243–252

    CAS  PubMed  Google Scholar 

  5. Perry A, Schmidt RE (2006) Cancer therapy-associated CNS neuropathology: an update and review of the literature. Acta Neuropathol 111:197–212

    Article  CAS  PubMed  Google Scholar 

  6. Langleben DD, Segall GM (2000) PET in differentiation of recurrent brain tumor from radiation injury. J Nucl Med 41:1861–1867

    CAS  PubMed  Google Scholar 

  7. Spaeth N, Wyss MT, Weber B, Scheidegger S et al (2004) Uptake of 18F-fluorocholine, 18F-fluoroethyl-L-tyrosine, and 18F-FDG in acute cerebral radiation injury in the rat: implications for separation of radiation necrosis from tumor recurrence. J Nucl Med 45:1931–1938

    CAS  PubMed  Google Scholar 

  8. Sugahara T, Korogi Y, Tomiguchi S, Shigematsu Y, Ikushima I et al (2000) Posttherapeutic intraaxial brain tumor: the value of perfusion-sensitive contrast-enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue. AJNR Am J Neuroradiol 21:901–909

    CAS  PubMed  Google Scholar 

  9. Morris JG, Grattan-Smith P, Panegyres PK, O’Neill P, Soo YS, Langlands AO (1994) Delayed cerebral radiation necrosis. Q J Med 87:119–129

    CAS  PubMed  Google Scholar 

  10. Burger PC, Mahley MS Jr, Dudka L, Vogel FS (1979) The morphologic effects of radiation administered therapeutically for intracranial gliomas: a postmortem study of 25 cases. Cancer 44:1256–1272

    Article  CAS  PubMed  Google Scholar 

  11. Kumar AJ, Leeds NE, Fuller GN, Tassel PV, Maor MH et al (2000) Malignant gliomas: MR imaging spectrum of radiation therapy- and chemotherapy-induced necrosis of the brain after treatment. Radiology 217:377–384

    CAS  PubMed  Google Scholar 

  12. Schultheiss TE, Kun LE, Ang KK, Stephens LC (1995) Radiation response of the central nervous system. Int J Radiat Oncol Biol Phys 31:1093–1112

    CAS  PubMed  Google Scholar 

  13. Burger PC, Boyko OB (1991) The pathology of central nervous system radiation injury. In: Gutin PH, Leibel SA, Sheline GE (eds) Radiation injury to the nervous system. Raven, New York, pp 191–208

    Google Scholar 

  14. Burger PC, Scheithauer BW (2007) Tumors of the central nervous system. American Registry of Pathology, Washington

    Google Scholar 

  15. Ironside JW, Moss TH, Louis DN, Lowe JS, Weller RO (2002) Diagnostic pathology of nervous system tumours. Churchill Livingstone, New York

    Google Scholar 

  16. Belka C, Budach W, Kortmann RD, Bamberg M (2001) Radiation induced CNS toxicity-molecular and cellular mechanisms. Br J Cancer 85:1233–1239

    Article  CAS  PubMed  Google Scholar 

  17. Lampert PW, Davis RL (1964) Delayed effects of radiation on the human central nervous system: “early” and “late” delayed reactions. Neurology 14:912–917

    CAS  PubMed  Google Scholar 

  18. Sugahara T, Korogi Y, Kochi M, Ikushima I, Shigematu Y, Hirai T et al (1999) Usefulness of diffusion-weighted MRI with echoplanar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging 9:53–60

    Article  CAS  PubMed  Google Scholar 

  19. Asao CH, Korogi Y, Kitajima M, Hirai T, Baba Y et al (2005) Diffusion-weighted imaging of radiation-induced brain injury for differentiation from tumor recurrence. AJNR Am J Neuroradiol 26:1455–1460

    PubMed  Google Scholar 

  20. Kono K, Inoue Y, Nakayama K et al (2001) The role of diffusion-weighted imaging in patients with brain tumors. AJNR Am J Neuroradiol 22:1081–1088

    CAS  PubMed  Google Scholar 

  21. Hayashida Y, Hirai T, Morishita S, Kitajima M, Murakami R et al (2006) Diffusion-weighted imaging of metastatic brain tumors: comparison with histologic type and tumor cellularity. AJNR Am J Neuroradiol 27:1419–1425

    CAS  PubMed  Google Scholar 

  22. Hein PA, Eskey CJ, Dunn JF, Hug EB (2004) Diffusion-weighted imaging in the follow-up of treated high-grade gliomas: tumor recurrence versus radiation injury. AJNR Am J Neuroradiol 25:201–209

    PubMed  Google Scholar 

  23. Zeng QS, Li CF, Liu H, Zhen JH, Feng DC (2007) Distinction between recurrent glioma and radiation injury using magnetic resonance spectroscopy in combination with diffusion-weighted imaging. Int J Radiation Oncology Biol Phys 68:151–158

    Google Scholar 

  24. Tung GA, Evangelista P, Rogg JM, Duncan JA (2001) Diffusion-weighted MR imaging of rim-enhancing brain masses: is markedly decreased water diffusion specific for brain abscess? AJR Am J Roentgenol 177:709–712

    CAS  PubMed  Google Scholar 

  25. Le Bihan D, Douek P, Argyropoulou M (1993) Diffusion and perfusion magnetic resonance imaging in brain tumors. Top Magn Reson Imaging 5:25–31

    Article  PubMed  Google Scholar 

  26. Moritani T, Ekholm S, Westesson P-L (2004) Diffusion-weighted MR imaging of the brain. Springer Verlag, Berlin Heidelberg New York

    Google Scholar 

  27. Ebisu T, Tanaka C, Umeda M et al (1996) Discrimination of brain abscess from necrotic or cystic tumors by echo planar imaging. Magn Reson Imaging 14:1113–1116

    Article  CAS  PubMed  Google Scholar 

  28. Fredman DP, Goldman HW, Flanders AE (1997) MR imaging of stereotaxic palidotomy and thalamotomy. AJR Am J Roentgenol 169:894–896

    Google Scholar 

  29. Tien RD, Flesberg GJ, Friedman H, Brown M, MacFall J (1994) MR imaging of high-grade cerebral gliomas: value of diffusion-weighted echoplanar pulse sequences. AJR Am J Roentgenol 162:671–677

    CAS  PubMed  Google Scholar 

  30. Hakyemez B, Erdogan C, Yildirim N, Parlak M (2005) Glioblastoma multiforme with atypical diffusion-weighted MR findings. Br J Radiol 78:989–992

    Article  CAS  PubMed  Google Scholar 

  31. Aronen HJ, Gazit IE, Louis DN et al (1994) Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 191:41–51

    CAS  PubMed  Google Scholar 

  32. Covarrubias DJ, Rosen BR, Lev MH (2004) Dynamic magnetic resonance perfusion imaging of brain tumors. Oncologist 9:528–537

    Article  PubMed  Google Scholar 

  33. Cha S, Knopp EA, Johnson G, Wetzel SG, Litt AW, Zagzag D (2002) Intracranial mass lesions: dynamic contrast-enhanced susceptibility-weighted echo-planar perfusion MR imaging. Radiology 223:11–29

    Article  PubMed  Google Scholar 

  34. Cotton F, Hermier M (2006) The advantage of high relaxivity contrast agents in brain perfusion. Eur Radio1 Suppl 16(Suppl 7):M 16–M 26

    Google Scholar 

  35. Wong JC, Provenzale JM, Petrella JR (2000) Perfusion MR imaging of brain neoplasms. AJR 174:1147–1157

    CAS  PubMed  Google Scholar 

  36. Sugahara T, Korogi Y, Kochi M et al (1998) Correlation of MR imaging-determined cerebral blood volume maps with histologic and angiographic determination of vascularity of gliomas. AJR Am J Roentgenol 171:1479–1486

    CAS  PubMed  Google Scholar 

  37. Aksoy FG, Lev MH (2000) Dynamic contrast- enhanced brain perfusion imaging: technique and clinical applications. Semin Ultrasound CT MR 21:462–477

    Article  CAS  PubMed  Google Scholar 

  38. Sorensen AG, Reimer P (2000) Cerebral MR perfusion imaging. Thieme, Stuttgart

    Google Scholar 

  39. Kimura T, Sako K, Tohyama Y, Aizawa S, Yoshida H et al (2003) Diagnosis and treatment of progressive space-occupying radiation necrosis following stereotactic radiosurgery for brain metastasis: value of proton magnetic resonance spectroscopy. Acta Neurochir (Wien) 145:557–564

    Article  CAS  Google Scholar 

  40. Ge Y, Law M, Johnson G et al (2005) Dynamic susceptibility contrast perfusion MR imaging of multiple sclerosis lesions: characterizing hemodynamic impairment and inflammatory activity. AJNR Am J Neuroradiol 26:1539–1547

    PubMed  Google Scholar 

  41. Chong VF-H, Rumpel H, Fan Y-F, Mukherji SK (2001) Temporal lobe changes following radiation therapy: imaging and proton MR spectroscopic findings. Eur Radiol 11:317–324

    Article  CAS  PubMed  Google Scholar 

  42. Edelman RR, Hesselink JR, Zlatkin MB, Crues JV (2006) Clinical magnetic resonance imaging. Saunders, Philadelphia

    Google Scholar 

  43. Hollingworth W, Medina LS, Lenkinski RE, Shibata DK, Bernal B et al (2006) A systematic literature review of magnetic resonance spectroscopy for the characterization of brain tumors. AJNR 27:1404–1411

    CAS  PubMed  Google Scholar 

  44. Lichy MP, Plathow CH, Schulz-Ertner D, Kauczor HU, Schlemmer H-P (2005) Follow-up gliomas after radiotherapy: 1H MR spectroscopic imaging for increasing diagnostic accuracy. Neuroradiology 47:826–834

    Article  PubMed  Google Scholar 

  45. Kimura T, Sako K, Tanaka K, Gotoh T, Yoshida H et al (2004) Evaluation of the response of metastatic brain tumors to stereotactic radiosurgery by proton magnetic resonance spectroscopy, 201TICI single-photon emission computerized tomography, and gadolinium-enhanced magnetic resonance imaging. J Neurosurg 100:835–841

    Article  PubMed  Google Scholar 

  46. Lichy MP, Henze M, Plathow C et al (2004) Metabolic imaging to follow stereotactic radiation of gliomas—the role of 1H MR spectroscopy in comparison to FDG-PET and IMT-SPECT. Rofo 176:1114–1121

    CAS  PubMed  Google Scholar 

  47. Ando K, Ishikura R, Nagami et al (2004) Usefulness of Cho/Cr ratio in proton MR spectroscopy for differentiating residual/recurrent glioma from non-neoplastic lesions. Nippon Igaku Hoshasen Gakkai Zasshi 64:121–126

    CAS  PubMed  Google Scholar 

  48. Schlemmer HP, Bachert P, Herfarth K, Zuna I, Debus J et al (2001) Proton MR spectroscopic evaluation of suspicious brain lesions after stereotactic readiotherapy. AJNR Am J Neuroradiol 22:1316–1324

    CAS  PubMed  Google Scholar 

  49. Sundgren PC, Mukherji SK (2004) MRS applications in oncology. In: Imaging Economics. http://www.imagingeconomics.com/issues/articles/2004-09_06.asp. Accessed 1 Aug 2008

  50. Plotkin M, Eisenacher J, Brunh H et al (2004) 123I-IMT SPECT and 1H MR-spectroscopy at 3.0 T in the differential diagnosis of recurrent or residual gliomas: a comparative study. Neurooncol 70:49–58

    Article  Google Scholar 

  51. Kimura T, Sako K, Tanaka K, Gotoh T, Tanaka T (2001) In vivo single-voxel proton MR spectroscopy in brain lesions with ring-like enhancement. NMR in Biomed 14:339–349

    Article  CAS  Google Scholar 

  52. Traber F, Block W, Flacke S et al (2002) 1H MR spectroscopy of brain tumors in the course of radiation therapy: use of fast spectroscopic imaging and single-voxel spectroscopy for diagnosing recurrence. Rofo 174:33–42

    CAS  PubMed  Google Scholar 

  53. Rabinov JD, Lee PL, Barker FG, Louis DN, Harsh GR et al (2002) In vivo 3-T MR spectroscopy in the distinction of recurrent glioma versus radiation effects: initial experience. Radiology 225:871–879

    Article  CAS  PubMed  Google Scholar 

  54. Rock JP, Scarpace L, Hearshen D, Gutierrez J et al (2004) Associations among magnetic resonance spectroscopy, apparent diffusion coefficients, and image guided histopathology with special attention to radiation necrosis. Neurosurgery 54:1111–1119

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

Supported by Slovak Scientific Grant Agency VEGA (No. 1/3430/06)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ľ. Pružincová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pružincová, Ľ., Šteňo, J., Srbecký, M. et al. MR imaging of late radiation therapy- and chemotherapy-induced injury: a pictorial essay. Eur Radiol 19, 2716–2727 (2009). https://doi.org/10.1007/s00330-009-1449-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-009-1449-8

Keywords

Navigation