Skip to main content
Log in

Imaging of adult astrocytic brain tumours with 7 T MRI: preliminary results

  • Magnetic Resonance
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Purpose

In this study tumour vascularity and necrosis of intracranial astrocytomas were compared using 7 T and 1.5 T magnetic resonance imaging (MRI).

Methods

Fifteen patients with histologically proven astrocytomas (WHO grades II–IV) were prospectively examined at 1.5 T (Magnetom Espree or Sonata) and 7 T (Magnetom 7 T, Siemens, Erlangen, Germany) with T2*-w (weighted), T1-w with (only a subset of five patients at 7 T) and without contrast medium, T2-w and proton-density (PD)-w MRI. Clinically used 1.5 T sequences were adapted to 7 T. Histological findings and T2*-w MR images at both field strengths were compared for the presence of assumed tumour microvascularity and necrosis. Two diffusely infiltrating astrocytomas, four anaplastic astrocytomas and nine glioblastomas were included.

Results

T2*-w images depicted susceptibility patterns representing presumed tumour microvascularity in 8 out of 15 (53%) gliomas at 7 T compared with 5 out of 15 (33%) gliomas at 1.5 T. Compared with 1.5 T MRI three additional necrotic tumour areas were depicted only on 7 T T2- and T2*-w images of one glioblastoma. On T1-w MR images, contrast enhancement of five out of five glioblastomas was similar at both field strengths.

Conclusion

7 T gradient-echo sequences provide excellent image contrast of presumed microvasculature and necrosis in astrocytomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yuh WT, Christoforidis GA, Koch RM et al (2006) Clinical magnetic resonance imaging of brain tumors at ultrahigh field: a state-of-the-art review. Top Magn Reson Imaging 17:53–61

    Article  PubMed  Google Scholar 

  2. Behin A, Hoang-Xuan K, Carpentier AF, Delattre JY (2003) Primary brain tumours in adults. Lancet 361:323–331

    Article  PubMed  Google Scholar 

  3. Croteau D, Scarpace L, Hearshen D et al (2001) Correlation between magnetic resonance spectroscopy imaging and image-guided biopsies: semiquantitative and qualitative histopathological analyses of patients with untreated glioma. Neurosurgery 49:823–829

    Article  CAS  PubMed  Google Scholar 

  4. Christoforidis GA, Grecula JC, Newton HB et al (2002) Visualization of microvascularity in glioblastoma multiforme with 8-T high-spatial-resolution MR imaging. AJNR Am J Neuroradiol 23:1553–1556

    PubMed  Google Scholar 

  5. Dashner RA, Kangarlu A, Clark DL, RayChaudhury A, Chakeres DW (2004) Limits of 8-Tesla magnetic resonance imaging spatial resolution of the deoxygenated cerebral microvasculature. J Magn Reson Imaging 19:303–307

    Article  PubMed  Google Scholar 

  6. Silverberg E, Boring CC, Squires TS (1990) Cancer statistics, 1990. CA Cancer J Clin 40:9–26

    Article  CAS  PubMed  Google Scholar 

  7. Burger PC, Vogel FS, Green SB, Strike TA (1985) Glioblastoma multiforme and anaplastic astrocytoma. Pathologic criteria and prognostic implications. Cancer 56:1106–1111

    Article  CAS  PubMed  Google Scholar 

  8. Louis DN, Ohgaki H, Wiestler OD et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropath 114:97–109

    Article  PubMed  Google Scholar 

  9. Kleihues P, Louis DN, Scheithauer BW et al (2002) The WHO classification of tumors of the nervous system. J Neuropathol Exp Neurol 61:226–229

    Google Scholar 

  10. Abduljalil AM, Kangarlu A, Yu Y, Robitaille PM (1999) Macroscopic susceptibility in ultra high field MRI. II: acquisition of spin echo images from the human head. J Comput Assist Tomogr 23:842–844

    Article  CAS  PubMed  Google Scholar 

  11. Burgess RE, Yu Y, Christoforidis GA et al (1999) Human leptomeningeal and cortical vascular anatomy of the cerebral cortex at 8 Tesla. J Comput Assist Tomogr 23:850–856

    Article  CAS  PubMed  Google Scholar 

  12. Vaughan JT, Garwood M, Collins CM et al (2001) 7 T vs 4 T: RF power, homogeneity, and signal-to-noise comparison in head images. Magn Reson Med 46:24–30

    Article  CAS  PubMed  Google Scholar 

  13. Dashner RA, Chakeres DW et al (2003) MR imaging visualization of the cerebral microvasculature: a comparison of live and postmortem studies at 8 T. AJNR Am J Neuroradiol 24:1881–1884

    PubMed  Google Scholar 

  14. Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1:27–31

    Article  CAS  PubMed  Google Scholar 

  15. Abramovitch R, Meir G, Neeman M (1995) Neovascularization induced growth of implanted C6 glioma multicellular spheroids: magnetic resonance microimaging. Cancer Res 55:1956–1962

    CAS  PubMed  Google Scholar 

  16. Brem S, Cotran R, Folkman J (1972) Tumor angiogenesis: a quantitative method for histologic grading. J Natl Cancer Inst 48:347–356

    CAS  PubMed  Google Scholar 

  17. Christoforidis GA, Kangarlu A, Abduljalil AM et al (2004) Susceptibility-based imaging of glioblastoma microvascularity at 8 T: correlation of MR imaging and postmortem pathology. AJNR Am J Neuroradiol 25:756–760

    PubMed  Google Scholar 

  18. Cho ZH, Kang CK, Han JY et al (2008) Observation of the lenticulostriate arteries in the human brain in vivo using 7.0 T MR angiography. Stroke 39:1604–1606

    Article  PubMed  Google Scholar 

  19. Di Costanzo A, Pollice S, Trojsi F et al (2008) Role of perfusion-weighted imaging at 3 Tesla in the assessment of malignancy of cerebral gliomas. Radiol Med 113:134–143

    Article  PubMed  Google Scholar 

  20. Ulmer S, Liess C et al (2009) Use of dynamic susceptibility-contrast MRI (DSC-MRI) to assess perfusion changes in the ipsilateral brain parenchyma from glioblastoma. J Neurooncol 91:213–220

    Article  PubMed  Google Scholar 

  21. Christoforidis GA, Bourekas EC, Baujan M et al (1999) High resolution MRI of the deep brain vascular anatomy at 8 Tesla: susceptibility-based enhancement of the venous structures. J Comput Assist Tomogr 23:857–866

    Article  CAS  PubMed  Google Scholar 

  22. Ogawa S, Lee TM (1990) Magnetic resonance imaging of blood vessels at high fields: in vivo and in vitro measurements and image simulation. Magn Reson Med 16:9–18

    Article  CAS  PubMed  Google Scholar 

  23. Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87:9868–9872

    Article  CAS  PubMed  Google Scholar 

  24. Bernstein MA, Huston J 3rd, Ward HA (2006) Imaging artifacts at 3.0 T. J Magn Reson Imaging 24:735–746

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Moenninghoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moenninghoff, C., Maderwald, S., Theysohn, J.M. et al. Imaging of adult astrocytic brain tumours with 7 T MRI: preliminary results. Eur Radiol 20, 704–713 (2010). https://doi.org/10.1007/s00330-009-1592-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-009-1592-2

Keywords

Navigation