Skip to main content
Log in

Optimal MRI methods for direct stereotactic targeting of the subthalamic nucleus and globus pallidus

  • Magnetic Resonance
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objective

Reliable identification of the subthalamic nucleus (STN) and globus pallidus interna (GPi) is critical for deep brain stimulation (DBS) of these structures. The purpose of this study was to compare the visibility of the STN and GPi with various MRI techniques and to assess the suitability of each technique for direct stereotactic targeting.

Methods

MR images were acquired from nine volunteers with T2- and proton density-weighted (PD-W) fast spin echo, susceptibility-weighted imaging (SWI), phase-sensitive inversion recovery and quantitative T1, T2 and T2* mapping sequences. Contrast-to-noise ratios (CNR) for the STN and GPi were calculated for all sequences. Targeting errors on SWI were evaluated on magnetic susceptibility maps. The sequences demonstrating the best conspicuity of DBS target structures (SWI and T2*) were then applied to ten patients with movement disorders, and the CNRs for these techniques were assessed.

Results

SWI offers the highest CNR for the STN, but standard PD-W images provide the best CNR for the pallidum. Susceptibility maps indicated that the GPi margins may be shifted slightly on SWI, although no shifts were seen for the STN.

Conclusion

SWI may improve the visibility of the STN on pre-operative MRI, potentially improving the accuracy of direct stereotactic targeting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CNR:

contrast-to-noise ratio(s)

DBS:

deep brain stimulation

DESPOT1 :

driven equilibrium single-pulse observation of T1

FSE:

fast spin echo

GPi:

globus pallidus interna

GRE:

gradient echo

IR:

inversion recovery

IR-FSPGR:

inversion recovery prepared fast spoiled gradient echo volume

PSIR:

phase sensitive inversion recovery

PD:

Parkinson’s disease

PD-W:

proton density-weighted

STN:

subthalamic nucleus

SWI:

susceptibility-weighted imaging

TE:

echo time

TI:

inversion time

TR:

repetition time

T2-W:

T2-weighted

References

  1. Tisch S, Zrinzo L, Limousin P et al (2007) Effect of electrode contact location on clinical efficacy of pallidal deep brain stimulation in primary generalised dystonia. J Neurol Neurosurg Psychiatry 78:1314–1319

    Article  CAS  PubMed  Google Scholar 

  2. Papavassiliou E, Rau G, Heath S et al (2008) Thalamic deep brain stimulation for essential tremor: Relation of lead location to outcome (Reprinted from Neurosurgery, vol 54, pg 1120-1130, 2004). Neurosurgery 62:884–893

    Article  PubMed  Google Scholar 

  3. Cuny E, Guehl D, Burbaud P et al (2002) Lack of agreement between direct magnetic resonance imaging and statistical determination of a subthalamic target: the role of electrophysiological guidance. J Neurosurg 97:591–597

    Article  PubMed  Google Scholar 

  4. Ashkan K, Blomstedt P, Zrinzo L et al (2007) Variability of the subthalamic nucleus: The case for direct MRI guided targeting. Br J Neurosurg 21:197–200

    Article  CAS  PubMed  Google Scholar 

  5. Hirabayashi H, Tengvar M, Hariz MI (2002) Stereotactic Imaging of the pallidal target. Mov Disord 17:S130–S134

    Article  PubMed  Google Scholar 

  6. Hariz MI, Krack P, Melvill R et al (2003) A quick and universal method for stereotactic visualization of the subthalamic nucleus before and after implantation of deep brain stimulation electrodes. Stereotact Funct Neurosurg 80:96–101

    Article  PubMed  Google Scholar 

  7. Starr PA, Vitek JL, DeLong M et al (1999) Magnetic resonance imaging-based stereotactic localization of the globus pallidus and subthalamic nucleus. Neurosurgery 44:303–313

    Article  CAS  PubMed  Google Scholar 

  8. Reich CA, Hudgins PA, Sheppard SK et al (2000) A high-resolution fast spin-echo inversion-recovery sequence for preoperative localization of the internal globus pallidus. Am J Neuroradiol 21:928–931

    CAS  PubMed  Google Scholar 

  9. Ishimori T, Nakano S, Mori Y et al (2007) Preoperative identification of subthalamic nucleus for deep brain stimulation using three-dimensional phase sensitive inversion recovery technique. Magn Reson Med Sci 6:225–229

    Article  PubMed  Google Scholar 

  10. Pinsker MO, Volkmann J, Falk D et al (2008) Electrode implantation for deep brain stimulation in dystonia: A fast spin-echo inversion-recovery sequence technique for direct stereotactic targeting of the GPi. Zentralbl Neurochir 69:71–75

    Article  CAS  PubMed  Google Scholar 

  11. Guo T, Finnis KW, Deoni SCL et al (2006) Comparison of different targeting methods for subthalamic nucleus deep brain stimulation. Medical Image Computing and Computer-Assisted Intervention—Miccai 2006, Pt 1 4190:768-775

  12. Elolf E, Bockermann V, Gringel T et al (2007) Improved visibility of the subthalamic nucleus on high-resolution stereotactic MR imaging by added susceptibility (T2*) contrast using multiple gradient echoes. Am J Neuroradiol 28:1093–1094

    Article  CAS  PubMed  Google Scholar 

  13. Haacke EM, Xu YB, Cheng YCN et al (2004) Susceptibility weighted imaging (SWI). Magn Reson Med 52:612–618

    Article  PubMed  Google Scholar 

  14. Vertinsky AT, Coenen VA, Lang DJ et al (2009) Localization of the subthalamic nucleus: Optimization with susceptibility-weighted phase MR imaging. Am J Neuroradiol Epub PMID: 19509077

  15. O’Gorman RL, Wastling SJ, Lythgoe DJ et al (2009) Quantitative comparison of MRI methods for pre-surgical localisation of the subthalamic nucleus. Mov Disord 24(suppl 1):S204

    Google Scholar 

  16. O’Gorman RL, Footman M, Lythgoe DJ et al (2009) Quantitative comparison of MRI methods for pre-surgical localisation of the globus pallidus. Mov Disord 24(suppl 1):S205

    Google Scholar 

  17. Shmueli K, van Gelderen P, Yao B et al (2009) The dependence of tissue phase contrast on orientation can be overcome by quantitative susceptibility mapping. Proceedings of the Annual Meeting of the International Society of Magnetic Resonance Medicine. Honolulu, Hawaii, p 466

  18. Shmueli K, de Zwart JA, van Gelderen P et al (2009) Magnetic susceptibility mapping of brain tissue in vivo using MRI phase data. Magn Reson Med 62:1510–1522

    Article  PubMed  Google Scholar 

  19. Deoni SCL, Rutt BK, Peters TM (2003) Rapid combined T-1 and T-2 mapping using gradient recalled acquisition in the steady state. Magn Reson Med 49:515–526

    Article  PubMed  Google Scholar 

  20. McRobbie DW (1997) A three-dimensional volumetric test object for geometry evaluation in magnetic resonance imaging. Med Phys 24:737–742

    Article  CAS  PubMed  Google Scholar 

  21. Richter EO, Hoque T, Halliday W et al (2004) Determining the position and size of the subthalamic nucleus based on magnetic resonance imaging results in patients with advanced Parkinson disease. J Neurosurg 100:541–546

    Article  PubMed  Google Scholar 

  22. Littlechild P, Varma TRK, Eldridge PR et al (2003) Variability in position of the subthalamic nucleus targeted by magnetic resonance imaging and microelectrode recordings as compared to atlas co-ordinates. Stereotact Funct Neurosurg 80:82–87

    Article  CAS  PubMed  Google Scholar 

  23. Yao B, Li TQ, van Gelderen P et al (2009) Susceptibility contrast in high field MRI of human brain as a function of tissue iron content. Neuroimage 44:1259–1266

    Article  PubMed  Google Scholar 

  24. Rutledge JN, Hilal SK, Silver AJ et al (1987) Study of movement disorders and brain iron by MR. Am J Roentgenol 149:365–379

    CAS  Google Scholar 

  25. Hallgren B, Sourander P (1958) The Effect of age on the non-haemin iron in the human brain. J Neurochem 3:41–51

    Article  CAS  PubMed  Google Scholar 

  26. Griffiths PD, Dobson BR, Jones GR et al (1999) Iron in the basal ganglia in Parkinson’s disease—An in vitro study using extended X-ray absorption fine structure and cryo-electron microscopy. Brain 122:667–673

    Article  PubMed  Google Scholar 

  27. Riederer P, Dirr A, Goetz M et al (1992) Distribution of iron in different brain regions and subcellular compartments in Parkinson’s disease. Ann Neurol 32:S101–S104

    Article  CAS  PubMed  Google Scholar 

  28. Dormont D, Ricciardi KG, Tande D et al (2004) Is the subthalamic nucleus hypointense on T2-weighted images? A correlation study using MR imaging and stereotactic atlas data. Am J Neuroradiol 25:1516–1523

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Sean Deoni for supplying the DESPOT sequence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth L. O’Gorman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Gorman, R.L., Shmueli, K., Ashkan, K. et al. Optimal MRI methods for direct stereotactic targeting of the subthalamic nucleus and globus pallidus. Eur Radiol 21, 130–136 (2011). https://doi.org/10.1007/s00330-010-1885-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-010-1885-5

Keywords

Navigation