Skip to main content

Advertisement

Log in

Diffusion-weighted magnetic resonance imaging of breast lesions: the influence of different fat-suppression techniques on quantitative measurements and their reproducibility

  • Magnetic Resonance
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objective

The aim of this study was to evaluate the influence of different fat-suppression techniques on quantitative measurements and their reproducibility when applied to diffusion-weighted imaging (DWI) of breast lesions.

Methods

Twenty-five patients with different types of breast lesions were examined on a clinical 1.5-T magnetic resonance imaging (MRI) system. Two diffusion-weighted sequences with different fat-suppression methods were applied: one with spectral presaturation by inversion recovery (SPIR), and one with short-TI inversion recovery (STIR). The acquisition of both sequence variants was repeated with modified shim volume. Lesion-to-background contrast (LBC), apparent diffusion coefficients (ADC) ADC(0,1000) and ADC(50,1000), and their coefficients of variation (CV) were determined.

Results

In four patients, the image quality of DWI with SPIR was insufficient. In the other 21 patients, 46 regions of interest (ROI), including 11 malignant and 35 benign lesions, were analysed. The LBC, ADC(0,1000) and ADC(50,1000) values, which did not differ between initial and repeated measurements, were significantly higher for STIR than for SPIR. The mean CV improved from 10.8 % to 4.0 % (P = 0.0047) for LBC, from 6.3 % to 2.9 % (P = 0.0041) for ADC(0,1000), and from 6.3 % to 2.6 % (P = 0.0049) for ADC(50,1000).

Conclusion

For STIR compared to SPIR fat suppression, improved lesion conspicuity, higher ADC values, and better measurement reproducibility were found in breast DWI.

Key Points

Quality of fat suppression influences quantitative DWI breast lesion measurements.

In breast DWI, STIR fat suppression worked more reliably than SPIR.

Lesion-to-background contrast and its reproducibility were significantly higher with STIR fat suppression.

Lesional ADCs and their reproducibility were significantly higher with STIR fat suppression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kuhl C (2007) The current status of breast MR imaging. Part I. Choice of technique, image interpretation, diagnostic accuracy, and transfer to clinical practice. Radiology 244:356–378

    Article  PubMed  Google Scholar 

  2. Warren RM, Pointon L, Thompson D, Hoff R, Gilbert FJ, Padhani A, Easton D, Lakhani SR, Leach MO (2005) Reading protocol for dynamic contrast-enhanced MR images of the breast: sensitivity and specificity analysis. Radiology 236:779–788

    Article  PubMed  Google Scholar 

  3. Peters NH, Borel Rinkes IH, Zuithoff NP, Mali WP, Moons KG, Peeters PH (2008) Meta-analysis of MR imaging in the diagnosis of breast lesions. Radiology 246:116–124

    Article  PubMed  Google Scholar 

  4. Partridge SC, McDonald ES (2013) Diffusion weighted magnetic resonance imaging of the breast: protocol optimization, interpretation, and clinical applications. Magn Reson Imaging Clin N Am 21:601–624

  5. Thomassin-Naggara I, De BC, Chopier J, Bazot M, Marsault C, Trop I (2013) Diffusion-weighted MR imaging of the breast: advantages and pitfalls. Eur J Radiol 82:435–443

  6. Cheng L, Bai Y, Zhang J, Liu M, Li X, Zhang A, Zhang X, Ma L (2013) Optimization of apparent diffusion coefficient measured by diffusion-weighted MRI for diagnosis of breast lesions presenting as mass and non-mass-like enhancement. Tumour Biol 34:1537–1545

    Article  PubMed  Google Scholar 

  7. Pereira FP, Martins G, Carvalhaes de Oliveira Rde V (2011) Diffusion magnetic resonance imaging of the breast. Magn Reson Imaging Clin N Am 19:95–110

    Article  PubMed  Google Scholar 

  8. Inoue K, Kozawa E, Mizukoshi W, Tanaka J, Saeki T, Sakurai T, Kimura F (2011) Usefulness of diffusion-weighted imaging of breast tumors: quantitative and visual assessment. Jpn J Radiol 29:429–436

    Article  PubMed  Google Scholar 

  9. Baltzer PA, Benndorf M, Dietzel M, Gajda M, Camara O, Kaiser WA (2010) Sensitivity and specificity of unenhanced MR mammography (DWI combined with T2-weighted TSE imaging, ueMRM) for the differentiation of mass lesions. Eur Radiol 20:1101–1110

    Article  PubMed  Google Scholar 

  10. Bogner W, Gruber S, Pinker K, Grabner G, Stadlbauer A, Weber M, Moser E, Helbich TH, Trattnig S (2009) Diffusion-weighted MR for differentiation of breast lesions at 3.0 T: how does selection of diffusion protocols affect diagnosis? Radiology 253:341–351

    Article  PubMed  Google Scholar 

  11. Stadlbauer A, Bernt R, Gruber S, Bogner W, Pinker K, van der Riet W, Haller J, Salomonowitz E (2009) Diffusion-weighted MR imaging with background body signal suppression (DWIBS) for the diagnosis of malignant and benign breast lesions. Eur Radiol 19:2349–2356

    Article  PubMed  Google Scholar 

  12. Yili Z, Xiaoyan H, Hongwen D, Yun Z, Xin C, Peng W, Youmin G (2009) The value of diffusion-weighted imaging in assessing the ADC changes of tissues adjacent to breast carcinoma. BMC Cancer 9:18

    Article  PubMed Central  PubMed  Google Scholar 

  13. Lo GG, Ai V, Chan JK, Li KW, Cheung PS, Wong TT, Ma M, Lee R, Chien D (2009) Diffusion-weighted magnetic resonance imaging of breast lesions: first experiences at 3 T. J Comput Assist Tomogr 33:63–69

    Article  PubMed  Google Scholar 

  14. Hatakenaka M, Soeda H, Yabuuchi H, Matsuo Y, Kamitani T, Oda Y, Tsuneyoshi M, Honda H (2008) Apparent diffusion coefficients of breast tumors: clinical application. Magn Reson Med Sci 7:23–29

    Article  PubMed  Google Scholar 

  15. Park MJ, Cha ES, Kang BJ, Ihn YK, Baik JH (2007) The role of diffusion-weighted imaging and the apparent diffusion coefficient (ADC) values for breast tumors. Korean J Radiol 8:390–396

    Article  PubMed Central  PubMed  Google Scholar 

  16. Marini C, Iacconi C, Giannelli M, Cilotti A, Moretti M, Bartolozzi C (2007) Quantitative diffusion-weighted MR imaging in the differential diagnosis of breast lesion. Eur Radiol 17:2646–2655

    Article  CAS  PubMed  Google Scholar 

  17. Guo Y, Cai YQ, Cai ZL, Gao YG, An NY, Ma L, Mahankali S, Gao JH (2002) Differentiation of clinically benign and malignant breast lesions using diffusion-weighted imaging. J Magn Reson Imaging 16:172–178

    Article  PubMed  Google Scholar 

  18. Park SH, Moon WK, Cho N, Chang JM, Im SA, Park IA, Kang KW, Han W, Noh DY (2012) Comparison of diffusion-weighted MR imaging and FDG PET/CT to predict pathological complete response to neoadjuvant chemotherapy in patients with breast cancer. Eur Radiol 22:18–25

    Article  PubMed  Google Scholar 

  19. Iacconi C, Giannelli M, Marini C, Cilotti A, Moretti M, Viacava P, Picano E, Michelotti A, Caramella D (2010) The role of mean diffusivity (MD) as a predictive index of the response to chemotherapy in locally advanced breast cancer: a preliminary study. Eur Radiol 20:303–308

    Article  PubMed  Google Scholar 

  20. Wang XH, Peng WJ, Tan HN, Xin C, Gu YJ, Tang F, Mao J (2010) Value of diffusion weighted imaging (DWI) in evaluating early response to neoadjuvant chemotherapy in locally advanced breast cancer. Zhonghua Zhong Liu Za Zhi 32:377–381

    PubMed  Google Scholar 

  21. Sharma U, Danishad KK, Seenu V, Jagannathan NR (2009) Longitudinal study of the assessment by MRI and diffusion-weighted imaging of tumor response in patients with locally advanced breast cancer undergoing neoadjuvant chemotherapy. NMR Biomed 22:104–113

    Article  PubMed  Google Scholar 

  22. Yankeelov TE, Lepage M, Chakravarthy A, Broome EE, Niermann KJ, Kelley MC, Meszoely I, Mayer IA, Herman CR, McManus K, Price RR, Gore JC (2007) Integration of quantitative DCE-MRI and ADC mapping to monitor treatment response in human breast cancer: initial results. Magn Reson Imaging 25:1–13

    Article  PubMed Central  PubMed  Google Scholar 

  23. Pickles MD, Gibbs P, Lowry M, Turnbull LW (2006) Diffusion changes precede size reduction in neoadjuvant treatment of breast cancer. Magn Reson Imaging 24:843–847

    Article  PubMed  Google Scholar 

  24. Rinaldi P, Giuliani M, Belli P, Costantini M, Romani M, Distefano D, Bufi E, Mule A, Magno S, Masetti R, Bonomo L (2010) DWI in breast MRI: role of ADC value to determine diagnosis between recurrent tumor and surgical scar in operated patients. Eur J Radiol 75:e114–e123

    Article  PubMed  Google Scholar 

  25. Pinker K, Bickel H, Helbich TH, Gruber S, Dubsky P, Pluschnig U, Rudas M, Bago-Horvath Z, Weber M, Trattnig S, Bogner W (2013) Combined contrast-enhanced magnetic resonance and diffusion-weighted imaging reading adapted to the "Breast Imaging Reporting and Data System" for multiparametric 3-T imaging of breast lesions. Eur Radiol 23:1791–1802

    Article  CAS  PubMed  Google Scholar 

  26. Kul S, Cansu A, Alhan E, Dinc H, Gunes G, Reis A (2011) Contribution of diffusion-weighted imaging to dynamic contrast-enhanced MRI in the characterization of breast tumors. AJR Am J Roentgenol 196:210–217

    Article  PubMed  Google Scholar 

  27. Ei Khouli RH, Jacobs MA, Mezban SD, Huang P, Kamel IR, Macura KJ, Bluemke DA (2010) Diffusion-weighted imaging improves the diagnostic accuracy of conventional 3.0-T breast MR imaging. Radiology 256:64–73

    Article  PubMed Central  PubMed  Google Scholar 

  28. Yabuuchi H, Matsuo Y, Kamitani T, Setoguchi T, Okafuji T, Soeda H, Sakai S, Hatakenaka M, Kubo M, Tokunaga E, Yamamoto H, Honda H (2010) Non-mass-like enhancement on contrast-enhanced breast MR imaging: lesion characterization using combination of dynamic contrast-enhanced and diffusion-weighted MR images. Eur J Radiol 75:e126–e132

    Article  PubMed  Google Scholar 

  29. Partridge SC, Demartini WB, Kurland BF, Eby PR, White SW, Lehman CD (2009) Quantitative diffusion-weighted imaging as an adjunct to conventional breast MRI for improved positive predictive value. AJR Am J Roentgenol 193:1716–1722

    Article  PubMed  Google Scholar 

  30. Hirano M, Satake H, Ishigaki S, Ikeda M, Kawai H, Naganawa S (2012) Diffusion-weighted imaging of breast masses: comparison of diagnostic performance using various apparent diffusion coefficient parameters. AJR Am J Roentgenol 198:717–722

    Article  PubMed  Google Scholar 

  31. Nilsen LB, Fangberget A, Geier O, Seierstad T (2013) Quantitative analysis of diffusion-weighted magnetic resonance imaging in malignant breast lesions using different b value combinations. Eur Radiol 23:1027–1033

    Article  PubMed Central  PubMed  Google Scholar 

  32. Jin G, An N, Jacobs MA, Li K (2010) The role of parallel diffusion-weighted imaging and apparent diffusion coefficient (ADC) map values for evaluating breast lesions: preliminary results. Acad Radiol 17:456–463

    Article  PubMed Central  PubMed  Google Scholar 

  33. Yuen S, Yamada K, Goto M, Nishida K, Takahata A, Nishimura T (2009) Microperfusion-induced elevation of ADC is suppressed after contrast in breast carcinoma. J Magn Reson Imaging 29:1080–1084

    Article  PubMed  Google Scholar 

  34. Partridge SC, Singer L, Sun R, Wilmes LJ, Klifa CS, Lehman CD, Hylton NM (2011) Diffusion-weighted MRI: influence of intravoxel fat signal and breast density on breast tumor conspicuity and apparent diffusion coefficient measurements. Magn Reson Imaging

  35. Kazama T, Nasu K, Kuroki Y, Nawano S, Ito H (2009) Comparison of diffusion-weighted images using short inversion time inversion recovery or chemical shift selective pulse as fat suppression in patients with breast cancer. Jpn J Radiol 27:163–167

    Article  PubMed  Google Scholar 

  36. Takahara T, Imai Y, Yamashita T, Yasuda S, Nasu S, Van CM (2004) Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display. Radiat Med 22:275–282

    PubMed  Google Scholar 

  37. Baron P, Dorrius MD, Kappert P, Oudkerk M, Sijens PE (2010) Diffusion-weighted imaging of normal fibroglandular breast tissue: influence of microperfusion and fat suppression technique on the apparent diffusion coefficient. NMR Biomed 23:399–405

    PubMed  Google Scholar 

  38. Wenkel E, Geppert C, Schulz-Wendtland R, Uder M, Kiefer B, Bautz W, Janka R (2007) Diffusion weighted imaging in breast MRI: comparison of two different pulse sequences. Acad Radiol 14:1077–1083

    Article  PubMed  Google Scholar 

  39. American College of Radiology (ACR) (2003) Breast imaging reporting and data system atlas (BI-RADS Atlas). American College of Radiology, VA

    Google Scholar 

  40. Woodhams R, Kakita S, Hata H, Iwabuchi K, Umeoka S, Mountford CE, Hatabu H (2009) Diffusion-weighted imaging of mucinous carcinoma of the breast: evaluation of apparent diffusion coefficient and signal intensity in correlation with histologic findings. AJR Am J Roentgenol 193:260–266

    Article  PubMed  Google Scholar 

  41. Englander SA, Ulug AM, Brem R, Glickson JD, van Zijl PC (1997) Diffusion imaging of human breast. NMR Biomed 10:348–352

    Article  CAS  PubMed  Google Scholar 

  42. Ginat DT, Meyers SP (2012) Intracranial lesions with high signal intensity on T1-weighted MR images: differential diagnosis. Radiographics 32:499–516

    Article  PubMed  Google Scholar 

  43. Merchant TE, Thelissen GR, de Graaf PW, Nieuwenhuizen CW, Kievit HC, Den OW (1993) Application of a mixed imaging sequence for MR imaging characterization of human breast disease. Acta Radiol 34:356–361

    Article  CAS  PubMed  Google Scholar 

  44. Zhao L, Kroenke CD, Song J, Piwnica-Worms D, Ackerman JJ, Neil JJ (2008) Intracellular water-specific MR of microbead-adherent cells: the HeLa cell intracellular water exchange lifetime. NMR Biomed 21:159–164

  45. Paran Y, Bendel P, Margalit R, Degani H (2004) Water diffusion in the different microenvironments of breast cancer. NMR Biomed 17:170–180

    Article  PubMed  Google Scholar 

  46. Xing D, Papadakis NG, Huang CL, Lee VM, Carpenter TA, Hall LD (1997) Optimised diffusion-weighting for measurement of apparent diffusion coefficient (ADC) in human brain. Magn Reson Imaging 15:771–784

    Article  CAS  PubMed  Google Scholar 

  47. Pereira FP, Martins G, Figueiredo E, Domingues MN, Domingues RC, da Fonseca LM, Gasparetto EL (2009) Assessment of breast lesions with diffusion-weighted MRI: comparing the use of different b values. AJR Am J Roentgenol 193:1030–1035

    Article  PubMed  Google Scholar 

  48. Sigmund EE, Cho GY, Kim S, Finn M, Moccaldi M, Jensen JH, Sodickson DK, Goldberg JD, Formenti S, Moy L (2011) Intravoxel incoherent motion imaging of tumor microenvironment in locally advanced breast cancer. Magn Reson Med 65:1437–1447

    Article  CAS  PubMed  Google Scholar 

  49. Costantini M, Belli P, Rinaldi P, Bufi E, Giardina G, Franceschini G, Petrone G, Bonomo L (2010) Diffusion-weighted imaging in breast cancer: relationship between apparent diffusion coefficient and tumour aggressiveness. Clin Radiol 65:1005–1012

    Article  CAS  PubMed  Google Scholar 

  50. Kim SH, Cha ES, Kim HS, Kang BJ, Choi JJ, Jung JH, Park YG, Suh YJ (2009) Diffusion-weighted imaging of breast cancer: correlation of the apparent diffusion coefficient value with prognostic factors. J Magn Reson Imaging 30:615–620

    Article  PubMed  Google Scholar 

  51. Kuroki Y, Nasu K, Kuroki S, Murakami K, Hayashi T, Sekiguchi R, Nawano S (2004) Diffusion-weighted imaging of breast cancer with the sensitivity encoding technique: analysis of the apparent diffusion coefficient value. Magn Reson Med Sci 3:79–85

    Article  PubMed  Google Scholar 

  52. Goebell E, Fiehler J, Martens T, Hagel C, Forkert ND, Russjan A, Rosenkranz M, Buhk JH, Groth M, Sedlacik J (2013) Impact of protein content on proton diffusibility in intracranial cysts. Röfo 185:60–65

    CAS  PubMed  Google Scholar 

  53. Silvera S, Oppenheim C, Touze E, Ducreux D, Page P, Domigo V, Mas JL, Roux FX, Fredy D, Meder JF (2005) Spontaneous intracerebral hematoma on diffusion-weighted images: influence of T2-shine-through and T2-blackout effects. AJNR Am J Neuroradiol 26:236–241

    PubMed  Google Scholar 

  54. Mori N, Ota H, Mugikura S, Takasawa C, Tominaga J, Ishida T, Watanabe M, Takase K, Takahashi S (2013) Detection of invasive components in cases of breast ductal carcinoma in situ on biopsy by using apparent diffusion coefficient MR parameters. Eur Radiol 23:2705–2712

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The scientific guarantor of this publication is Dr. Petra Mürtz. The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article. The authors state that this work has not received any funding. No complex statistical methods were necessary for this paper. Institutional Review Board approval was obtained. Written informed consent was obtained from all patients in this study. Methodology: prospective, diagnostic or prognostic study, performed at one institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Mürtz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mürtz, P., Tsesarskiy, M., Kowal, A. et al. Diffusion-weighted magnetic resonance imaging of breast lesions: the influence of different fat-suppression techniques on quantitative measurements and their reproducibility. Eur Radiol 24, 2540–2551 (2014). https://doi.org/10.1007/s00330-014-3235-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-014-3235-5

Keywords

Navigation