Skip to main content
Log in

Veins in plaques of multiple sclerosis patients – a longitudinal magnetic resonance imaging study at 7 Tesla –

  • Magnetic Resonance
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objective

To monitor the venous volumes in plaques of patients with multiple sclerosis (MS) compared to an age-matched control group over a period of 3.5 years.

Methods

Ten MS patients underwent an annual neurological examination and MRI. Susceptibility-weighted imaging (SWI) combined with fluid-attenuated inversion recovery (FLAIR) or FLAIR–like contrast at 7 Tesla (7 T) magnetic resonance imaging (MRI) was used for manual segmentation of veins in plaques, in the normal-appearing white matter (NAWM) and in location-matched white matter of 9 age-matched controls. Venous volume to tissue volume ratio was assessed for each time point in order to describe the dynamics of venous volumes in MS plaques over time.

Results

MS plaques, which were newly detected during the study period, showed significantly higher venous volumes compared to the preplaque area 1 year before plaque detection and the corresponding NAWM regions. Venous volumes in established MS plaques, which were present already in the first scans, were significantly higher compared to the NAWM and controls.

Conclusions

Our data underpin a relation of veins and plaque development in MS and reflect increased apparent venous calibers due to increased venous diameters or increased oxygen consumption in early MS plaques.

Key points

Longitudinal 7 T Magnetic Resonance Imaging study of intralesional veins in MS patients.

Venous volumes are significantly increased in newly detected and established MS plaques.

Venous volumes in established MS plaques show a trend to decrease with time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Reference

  1. Frischer JM, Bramow S, Dal-Bianco A, Lucchinetti CF, Rauschka H et al (2009) The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain 132:1175–1189

    Article  PubMed Central  PubMed  Google Scholar 

  2. Rindfleisch E (1863) Histologisches Detail zur grauen Degeneration von Gehirn und Rückenmark. Arch Pathol Anat Physiol Klin Med (Virchow) 26:474–483

    Article  Google Scholar 

  3. Putnam T (1933) The pathogenesis of multiple sclerosis, a possible vascular factor. N Engl J Med 209:786–790

    Article  Google Scholar 

  4. Putnam T (1937) Vascular architecture of the lesions of multiple sclerosis. Arch Neurol Psychiatr 38:1–15

    Article  Google Scholar 

  5. Fog T (1964) On the vessel-plaque relationships in the brain in multiple sclerosis. Acta Neurol Scand Suppl 40(SUPPL 10):19–15

    Google Scholar 

  6. Waksman BH (1964) Local reaction of cellular hypersensitivity. Ann N Y Acad Sci 116:1045–51

    Article  CAS  PubMed  Google Scholar 

  7. Adams CW (1988) Perivascular iron deposition and other vascular damage in multiple sclerosis. J Neurol Neurosurg Psychiatry 51:260–265

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Tallantyre EC, Brookes MJ, Dixon JE, Morgan PS, Evangelou N et al (2008) Demonstrating the perivascular distribution of MS lesions in vivo with 7-Tesla MRI. Neurology 70:2076–2078

    Article  CAS  PubMed  Google Scholar 

  9. Kollia K, Maderwald S, Putzki N, Schlamann M, Theysohn JM et al (2009) First clinical study on ultra-high-field MR imaging in patients with multiple sclerosis: comparison of 1.5 T and 7 T. AJNR Am J Neuroradiol 30:699–702

    Article  CAS  PubMed  Google Scholar 

  10. Mistry N, Dixon J, Tallantyre E, Tench C, Abdel-Fahim R et al (2013) Central veins in brain lesions visualized with high-field magnetic resonance imaging: a pathologically specific diagnostic biomarker for inflammatory demyelination in the brain. JAMA Neurol 70:623–628

    Article  PubMed  Google Scholar 

  11. Tallantyre EC, Morgan PS, Dixon JE, Al-Radaideh A, Brookes MJ et al (2009) A comparison of 3 T and 7 T in the detection of small parenchymal veins within MS lesions. Invest Radiol 44:491–494

    Article  PubMed  Google Scholar 

  12. Gaitan MI, Maggi P, Wohler J, Leibovitch E, Sati P et al (2014) Perivenular brain lesions in a primate multiple sclerosis model at 7-tesla magnetic resonance imaging. Mult Scler 20:64–71

    Article  PubMed  Google Scholar 

  13. Ge Y, Zohrabian VM, Grossman RI (2008) Seven-tesla magnetic resonance imaging: new vision of microvascular abnormalities in multiple sclerosis. Arch Neurol 65:812–816

    PubMed Central  PubMed  Google Scholar 

  14. Kau T, Taschwer M, Deutschmann H, Schonfelder M, Weber JR et al (2013) The "central vein sign": is there a place for susceptibility weighted imaging in possible multiple sclerosis? Eur Radiol 23:1956–1962

    Article  PubMed  Google Scholar 

  15. Sinnecker T, Bozin I, Dorr J, Pfueller CF, Harms L, et al. (2012) Periventricular venous density in multiple sclerosis is inversely associated with T2 lesion count: a 7 Tesla MRI study. Mult Scler 19(3):316–325

  16. Ge Y, Zohrabian VM, Osa EO, Xu J, Jaggi H et al (2009) Diminished visibility of cerebral venous vasculature in multiple sclerosis by susceptibility-weighted imaging at 3.0 tesla. J Magn Reson Imaging 29:1190–1194

    Article  PubMed Central  PubMed  Google Scholar 

  17. Grabner G, Dal-Bianco A, Schernthaner M, Vass K, Lassmann H et al (2011) Analysis of multiple sclerosis lesions using a fusion of 3.0 T FLAIR and 7.0 T SWI phase: FLAIR SWI. J Magn Reson Imaging: JMRI 33:543–549

    Article  PubMed  Google Scholar 

  18. Polman CH, Reingold SC, Edan G, Filippi M, Hartung HP et al (2005) Diagnostic criteria for multiple sclerosis: 2005 revisions to the "McDonald Criteria". Ann Neurol 58:840–846

    Article  PubMed  Google Scholar 

  19. Pruessner JC, Li LM, Serles W, Pruessner M, Collins DL et al (2000) Volumetry of hippocampus and amygdala with high-resolution MRI and three-dimensional analysis software: minimizing the discrepancies between laboratories. Cereb Cortex 10:433–442

    Article  CAS  PubMed  Google Scholar 

  20. Vincent RD JA, Sled JG, Baghdadi L, Neelin P, Evans AC (2004) MINC 2.0: a modality independent format for multidimensional medical images. Proceedings of the 10th Annual Meeting of the Organization for Human Brain Mapping, Budapest, Hungary (abstract WE 323)

  21. Rauscher A, Sedlacik J, Barth M, Haacke EM, Reichenbach JR (2005) Nonnvasive assessment of vascular architecture and function during modulated blood oxygenation using susceptibility weighted magnetic resonance imaging. Magn Reson Med: Off J Soc Magn Reson Med / Soc Magn Reson Med 54:87–95

    Article  Google Scholar 

  22. Davies AL, Desai RA, Bloomfield PS, McIntosh PR, Chapple KJ et al (2013) Neurological deficits caused by tissue hypoxia in neuroinflammatory disease. Ann Neurol 74:815–825

    Article  CAS  PubMed  Google Scholar 

  23. Mahad DJ, Ziabreva I, Campbell G, Lax N, White K et al (2009) Mitochondrial changes within axons in multiple sclerosis. Brain 132:1161–1174

    Article  PubMed Central  PubMed  Google Scholar 

  24. Mews I, Bergmann M, Bunkowski S, Gullotta F, Bruck W (1998) Oligodendrocyte and axon pathology in clinically silent multiple sclerosis lesions. Mult Scler 4:55–62

    Article  CAS  PubMed  Google Scholar 

  25. Bjartmar C, Wujek JR, Trapp BD (2003) Axonal loss in the pathology of MS: consequences for understanding the progressive phase of the disease. J Neurol Sci 206:165–171

    Article  CAS  PubMed  Google Scholar 

  26. Kornek B, Storch MK, Weissert R, Wallstroem E, Stefferl A et al (2000) Multiple sclerosis and chronic autoimmune encephalomyelitis: a comparative quantitative study of axonal injury in active, inactive, and remyelinated lesions. Am J Pathol 157:267–276

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Frischer JM, Bramow S, Dal-Bianco A, Lucchinetti CF, Rauschka H et al (2009) The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain J Neurol 132:1175–1189

    Article  Google Scholar 

  28. Bakshi R, Miletich RS, Kinkel PR, Emmet ML, Kinkel WR (1998) High-resolution fluorodeoxyglucose positron emission tomography shows both global and regional cerebral hypometabolism in multiple sclerosis. J Neuroimaging 8:228–234

    Article  CAS  PubMed  Google Scholar 

  29. Brooks DJ, Leenders KL, Head G, Marshall J, Legg NJ et al (1984) Studies on regional cerebral oxygen utilisation and cognitive function in multiple sclerosis. J Neurol Neurosurg Psychiatry 47:1182–1191

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Blinkenberg M, Rune K, Jensen CV, Ravnborg M, Kyllingsbaek S et al (2000) Cortical cerebral metabolism correlates with MRI lesion load and cognitive dysfunction in MS. Neurology 54:558–564

    Article  CAS  PubMed  Google Scholar 

  31. Varga AW, Johnson G, Babb JS, Herbert J, Grossman RI et al (2009) White matter hemodynamic abnormalities precede sub-cortical gray matter changes in multiple sclerosis. J Neurol Sci 282:28–33

    Article  PubMed Central  PubMed  Google Scholar 

  32. Adhya S, Johnson G, Herbert J, Jaggi H, Babb JS et al (2006) Pattern of hemodynamic impairment in multiple sclerosis: dynamic susceptibility contrast perfusion MR imaging at 3.0 T. Neuroimage 33:1029–1035

    Article  PubMed Central  PubMed  Google Scholar 

  33. Ge Y, Law M, Johnson G, Herbert J, Babb JS et al (2005) Dynamic susceptibility contrast perfusion MR imaging of multiple sclerosis lesions: characterizing hemodynamic impairment and inflammatory activity. AJNR Am J Neuroradiol 26:1539–1547

    PubMed  Google Scholar 

  34. Law M, Saindane AM, Ge Y, Babb JS, Johnson G et al (2004) Microvascular abnormality in relapsing-remitting multiple sclerosis: perfusion MR imaging findings in normal-appearing white matter. Radiology 231:645–652

    Article  PubMed  Google Scholar 

  35. D'Haeseleer M, Cambron M, Vanopdenbosch L, De Keyser J (2011) Vascular aspects of multiple sclerosis. Lancet Neurol 10:657–666

    Article  PubMed  Google Scholar 

  36. Wuerfel J, Sinnecker T, Ringelstein EB, Jarius S, Schwindt W et al (2012) Lesion morphology at 7 Tesla MRI differentiates Susac syndrome from multiple sclerosis. Mult Scler 18:1592–1599

    Article  PubMed  Google Scholar 

  37. Bagnato F, Hametner S, Yao B, van Gelderen P, Merkle H et al (2011) Tracking iron in multiple sclerosis: a combined imaging and histopathological study at 7 Tesla. Brain 134:3602–3615

    Article  PubMed  Google Scholar 

  38. Gaitan MI, de Alwis MP, Sati P, Nair G, Reich DS (2013) Multiple sclerosis shrinks intralesional, and enlarges extralesional, brain parenchymal veins. Neurology 80:145–151

    Article  PubMed Central  PubMed  Google Scholar 

  39. Muller K, Kuchling J, Dorr J, Harms L, Ruprecht K, et al. (2014) Detailing intra-lesional venous lumen shrinking in multiple sclerosis investigated by sFLAIR MRI at 7-T. J Neurol 261(10):2032–2036

  40. Zamboni P, Galeotti R, Menegatti E, Malagoni AM, Tacconi G et al (2009) Chronic cerebrospinal venous insufficiency in patients with multiple sclerosis. J Neurol Neurosurg Psychiatry 80:392–399

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Macgowan CK, Chan KY, Laughlin S, Marrie RA, Banwell B (2014) Cerebral arterial and venous blood flow in adolescent multiple sclerosis patients and age-matched controls using phase contrast MRI. J Magn Reson Imaging: JMRI 40:341–347

    Article  PubMed  Google Scholar 

  42. Barkhof F, Wattjes MP (2013) Multiple sclerosis: CCSVI deconstructed and discarded. Nat Rev Neurol 9:661–662

    Article  PubMed  Google Scholar 

  43. Meyer-Schwickerath R, Haug C, Hacker A, Fink F, Seidel D et al (2011) Intracranial venous pressure is normal in patients with multiple sclerosis. Mult Scler 17:637–638

    Article  PubMed  Google Scholar 

  44. Zivadinov R, Poloni GU, Marr K, Schirda CV, Magnano CR et al (2011) Decreased brain venous vasculature visibility on susceptibility-weighted imaging venography in patients with multiple sclerosis is related to chronic cerebrospinal venous insufficiency. BMC Neurol 11:128

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Hans Lassmann for discussing the presented results and giving precious advice for the interpretation of the data. The scientific guarantor of this publication is Assunta Dal-Bianco. The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article. The authors state that this work has not received any funding. One of the authors has significant statistical expertise. Institutional Review Board approval was obtained. Written informed consent was obtained from all subjects (patients) in this study. No study subjects or cohorts have been previously reported. Methodology: case-control study, performed at one institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Assunta Dal-Bianco.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 18836 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dal-Bianco, A., Hametner, S., Grabner, G. et al. Veins in plaques of multiple sclerosis patients – a longitudinal magnetic resonance imaging study at 7 Tesla –. Eur Radiol 25, 2913–2920 (2015). https://doi.org/10.1007/s00330-015-3719-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-015-3719-y

Keywords

Navigation