Skip to main content
Log in

Non-Enhanced MR Imaging of Cerebral Arteriovenous Malformations at 7 Tesla

  • Neuro
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objective

To evaluate prospectively 7 Tesla time-of-flight (TOF) magnetic resonance angiography (MRA) and 7 Tesla non-contrast-enhanced magnetization-prepared rapid acquisition gradient-echo (MPRAGE) for delineation of intracerebral arteriovenous malformations (AVMs) in comparison to 1.5 Tesla TOF MRA and digital subtraction angiography (DSA).

Methods

Twenty patients with single or multifocal AVMs were enrolled in this trial. The study protocol comprised 1.5 and 7 Tesla TOF MRA and 7 Tesla non-contrast-enhanced MPRAGE sequences. All patients underwent an additional four-vessel 3D DSA. Image analysis of the following five AVM features was performed individually by two radiologists on a five-point scale: nidus, feeder(s), draining vein(s), relationship to adjacent vessels, and overall image quality and presence of artefacts.

Results

A total of 21 intracerebral AVMs were detected. Both sequences at 7 Tesla were rated superior over 1.5 Tesla TOF MRA in the assessment of all considered AVM features. Image quality at 7 Tesla was comparable with DSA considering both sequences. Inter-observer accordance was good to excellent for the majority of ratings.

Conclusion

This study demonstrates excellent image quality for depiction of intracerebral AVMs using non-contrast-enhanced 7 Tesla MRA, comparable with DSA. Assessment of untreated AVMs is a promising clinical application of ultra-high-field MRA.

Key Points

Non-contrast-enhanced 7 Tesla MRA demonstrates excellent image quality for intracerebral AVM depiction.

Image quality at 7 Tesla was comparable with DSA considering both sequences.

Assessment of intracerebral AVMs is a promising clinical application of ultra-high-field MRA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Berman MF, Sciacca RR, Pile-Spellman J et al (2000) The epidemiology of brain arteriovenous malformations. Neurosurgery 47:389–397

    Article  CAS  PubMed  Google Scholar 

  2. Hartmann A, Mast H, Mohr JP et al (1998) Morbidity of intracranial hemorrhage in patients with cerebral arteriovenous malformation. Stroke 29:931–934

    Article  CAS  PubMed  Google Scholar 

  3. Soderman M, Andersson T, Karlsson B, Wallace MC, Edner G (2003) Management of patients with brain arteriovenous malformations. Eur J Radiol 46:195–205

    Article  PubMed  Google Scholar 

  4. Spetzler RF, Martin NA (1986) A proposed grading system for arteriovenous malformations. J Neurosurg 65:476–483

    Article  CAS  PubMed  Google Scholar 

  5. Mohr JP, Parides MK, Stapf C et al (2014) Medical management with or without interventional therapy for unruptured brain arteriovenous malformations (ARUBA): a multicentre, non-blinded, randomised trial. Lancet 383:614–621

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Hernesniemi JA, Dashti R, Juvela S, Vaart K, Niemela M, Laakso A (2008) Natural history of brain arteriovenous malformations: a long-term follow-up study of risk of hemorrhage in 238 patients. Neurosurgery 63:823–829, discussion 829–831

    Article  PubMed  Google Scholar 

  7. Yu S, Yan L, Yao Y et al (2012) Noncontrast dynamic MRA in intracranial arteriovenous malformation (AVM), comparison with time of flight (TOF) and digital subtraction angiography (DSA). Magn Reson Imaging 30:869–877

    Article  PubMed Central  PubMed  Google Scholar 

  8. Umutlu L, Theysohn N, Maderwald S et al (2013) 7 Tesla MPRAGE imaging of the intracranial arterial vasculature: nonenhanced versus contrast-enhanced. Acad Radiol 20:628–634

    Article  PubMed  Google Scholar 

  9. Wrede KH, Dammann P, Mönninghoff C et al (2014) Non-enhanced MR imaging of cerebral aneurysms: 7 tesla versus 1.5 tesla. PLoS ONE 9, e84562

    Article  PubMed Central  PubMed  Google Scholar 

  10. Nowinski WL, Puspitasaari F, Volkau I, Marchenko Y, Knopp MV (2013) Comparison of magnetic resonance angiography scans on 1.5, 3, and 7 tesla units: a quantitative study of 3-dimensional cerebrovasculature. J Neuroimaging. doi:10.1111/j.1552-6569.2011.00597.x:86–95

    PubMed  Google Scholar 

  11. Wrede KH, Johst S, Dammann P et al (2012) Caudal image contrast inversion in MPRAGE at 7 tesla problem and solution. Acad Radiol 19:172–178

    Article  PubMed  Google Scholar 

  12. Johst S, Wrede KH, Ladd ME, Maderwald S (2012) Time-of-flight magnetic resonance angiography at 7 T using venous saturation pulses with reduced flip angles. Investig Radiol 47:445–450

    Article  Google Scholar 

  13. Wrede KH, Johst S, Dammann P et al (2014) Improved cerebral time-of-flight magnetic resonance angiography at 7 tesla – feasibility study and preliminary results using optimized venous saturation pulses. PLoS ONE 9, e106697

    Article  PubMed Central  PubMed  Google Scholar 

  14. Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20:37–46

    Article  Google Scholar 

  15. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174

    Article  CAS  PubMed  Google Scholar 

  16. Willinsky RA, Taylor SM, TerBrugge K, Farb RI, Tomlinson G, Montanera W (2003) Neurologic complications of cerebral angiography: prospective analysis of 2,899 procedures and review of the literature. Radiology 227:522–528

    Article  PubMed  Google Scholar 

  17. Bendszus M, Koltzenburg M, Burger R, Warmuth-Metz M, Hofmann E, Solymosi L (1999) Silent embolism in diagnostic cerebral angiography and neurointerventional procedures: a prospective study. Lancet 354:1594–1597

    Article  CAS  PubMed  Google Scholar 

  18. Buis DR, Bot JC, Barkhof F et al (2012) The predictive value of 3D time-of-flight MR angiography in assessment of brain arteriovenous malformation obliteration after radiosurgery. Am J Neuroradiol 33:232–238

    Article  CAS  PubMed  Google Scholar 

  19. Pollock BE, Kondziolka D, Flickinger JC, Patel AK, Bissonette DJ, Lunsford LD (1996) Magnetic resonance imaging: an accurate method to evaluate arteriovenous malformations after stereotactic radiosurgery. J Neurosurg 85:1044–1049

    Article  CAS  PubMed  Google Scholar 

  20. Reinacher PC, Stracke P, Reinges MHT, Hans FJ, Krings T (2007) Contrast-enhanced time-resolved 3-D MRA: applications in neurosurgery and interventional neuroradiology. Neuroradiology 49:S3–S13

    Article  PubMed  Google Scholar 

  21. Hadizadeh DR, Von Falkenhausen M, Gieseke J et al (2008) Cerebral arteriovenous malformation: spetzler-Martin classification at subsecond-temporal-resolution four-dimensional MR angiography compared with that at DSA. Radiology 246:205–213

    Article  PubMed  Google Scholar 

  22. Eddleman CS, Jeong HJ, Hurley MC et al (2009) 4D radial acquisition contrast-enhanced MR angiography and intracranial arteriovenous malformations: quickly approaching digital subtraction angiography. Stroke 40:2749–2753

    Article  PubMed Central  PubMed  Google Scholar 

  23. Monninghoff C, Maderwald S, Theysohn JM et al (2009) Evaluation of intracranial aneurysms with 7 T versus 1.5 T time-of-flight MR angiography - initial experience. RöFo 181:16–23

    CAS  PubMed  Google Scholar 

  24. Gibbs GF, Huston J 3rd, Bernstein MA, Riederer SJ, Brown RD Jr (2004) Improved image quality of intracranial aneurysms: 3.0-T versus 1.5-T time-of-flight MR angiography. Am J Neuroradiol 25:84–87

    PubMed  Google Scholar 

  25. Edelstein WA, Glover GH, Hardy CJ, Redington RW (1986) The intrinsic signal-to-noise ratio in NMR imaging. Magn Reson Med 3:604–618

    Article  CAS  PubMed  Google Scholar 

  26. Majoie CBLM, Sprengers ME, Van Rooij WJJ et al (2005) MR angiography at 3T versus digital subtraction angiography in the follow-up of intracranial aneurysms treated with detachable coils. Am J Neuroradiol 26:1349–1356

    PubMed  Google Scholar 

  27. Grinstead JW, Rooney W, Laub G (2010) The origins of bright blood MPRAGE at 7 tesla and a simultaneous method for T1 imaging and non-contrast MRA. Proc Int Soc Magn Reson Med 18:1429

    Google Scholar 

  28. Fischer A, Maderwald S, Johst S et al (2014) Initial evaluation of non-contrast-enhanced magnetic resonance angiography in patients with peripheral arterial occlusive disease at 7 T. Investig Radiol 49:331–338

    Article  CAS  Google Scholar 

  29. Johst S, Orzada S, Fischer A et al (2014) Sequence comparison for non-enhanced MRA of the lower extremity arteries at 7 tesla. PLoS ONE 9, e86274

    Article  PubMed Central  PubMed  Google Scholar 

  30. Umutlu L, Maderwald S, Kinner S et al (2013) First-pass contrast-enhanced renal MRA at 7 tesla: initial results. Eur Radiol 23:1059–1066

    Article  CAS  PubMed  Google Scholar 

  31. Zwanenburg JJ, Hendrikse J, Takahara T, Visser F, Luijten PR (2008) MR angiography of the cerebral perforating arteries with magnetization prepared anatomical reference at 7 T: comparison with time-of-flight. J Magn Reson Imaging 28:1519–1526

    Article  PubMed  Google Scholar 

  32. Heverhagen JT, Bourekas E, Sammet S, Knopp MV, Schmalbrock P (2008) Time-of-flight magnetic resonance angiography at 7 tesla. Investig Radiol 43:568–573

    Article  Google Scholar 

  33. Kraff O, Wrede KH, Schoemberg T et al (2013) MR safety assessment of potential RF heating from cranial fixation plates at 7 T. Med Phys 40:042302

  34. Blauwblomme T, Naggara O, Brunelle F et al (2015) Arterial spin labeling magnetic resonance imaging: toward noninvasive diagnosis and follow-up of pediatric brain arteriovenous malformations. J Neurosurg Pediatr 15:451–458

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Lena C. Schäfer (RT) for performing all the 7 Tesla examinations.

The scientific guarantor of this publication is Dr. Karsten H. Wrede. The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article. This study has received funding by University Duisburg Essen (IFORES grant). Dr. Ulrike Krahn kindly provided statistical advice for this manuscript. Institutional Review Board approval was obtained. Written informed consent was obtained from all subjects (patients) in this study. Methodology: prospective, observational, multicenter study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karsten H. Wrede.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wrede, K.H., Dammann, P., Johst, S. et al. Non-Enhanced MR Imaging of Cerebral Arteriovenous Malformations at 7 Tesla. Eur Radiol 26, 829–839 (2016). https://doi.org/10.1007/s00330-015-3875-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-015-3875-0

Keywords

Navigation