Skip to main content
Log in

Fetal diffusion tensor quantification of brainstem pathology in Chiari II malformation

  • Neuro
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

This prenatal MRI study evaluated the potential of diffusion tensor imaging (DTI) metrics to identify changes in the midbrain of fetuses with Chiari II malformations compared to fetuses with mild ventriculomegaly, hydrocephalus and normal CNS development.

Methods

Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were calculated from a region of interest (ROI) in the midbrain of 46 fetuses with normal CNS, 15 with Chiari II malformations, eight with hydrocephalus and 12 with mild ventriculomegaly. Fetuses with different diagnoses were compared group-wise after age-matching. Axial T2W-FSE sequences and single-shot echo planar DTI sequences (16 non-collinear diffusion gradient-encoding directions, b-values of 0 and 700 s/mm2, 1.5 Tesla) were evaluated retrospectively.

Results

In Chiari II malformations, FA was significantly higher than in age-matched fetuses with a normal CNS (p = .003), while ADC was not significantly different. No differences in DTI metrics between normal controls and fetuses with hydrocephalus or vetriculomegaly were detected.

Conclusions

DTI can detect and quantify parenchymal alterations of the fetal midbrain in Chiari II malformations. Therefore, in cases of enlarged fetal ventricles, FA of the fetal midbrain may contribute to the differentiation between Chiari II malformation and other entities.

Key Points

• FA in the fetal midbrain is elevated in Chiari II malformations.

• FA is not elevated in hydrocephalus and mild ventriculomegaly without Chiari II.

• Measuring FA may help distinguish different causes for enlarged ventricles prenatally.

• Elevated FA may aid in the diagnosis of open neural tube defects.

• Elevated FA might contribute to stratification for prenatal surgery in Chiari II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ADC:

Apparent diffusion coefficient

CNS:

Central nervous system

DTI:

Diffusion tensor imaging

FA:

Fractional anisotropy

GW:

Gestational weeks/ weeks of gestation

ROI(s):

Region(s) of interest

SSFSE:

Single-shot fast spin-echo

TE:

Echo time

TR:

Repetition time

References

  1. Kahn L, Mbabuike N, Valle-Giler EP et al (2014) Fetal surgery: the ochsner experience with in utero spina bifida repair. Ochsner J 14:112–118

    PubMed  PubMed Central  Google Scholar 

  2. Lorber J, Ward AM (1985) Spina bifida--a vanishing nightmare? Arch Dis Child 60:1086–1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Milunsky A, Jick SS, Bruell CL et al (1989) Predictive values, relative risks, and overall benefits of high and low maternal serum alpha-fetoprotein screening in singleton pregnancies: new epidemiologic data. Am J Obstet Gynecol 161:291–297

    Article  CAS  PubMed  Google Scholar 

  4. Chaoui R, Benoit B, Mitkowska-Wozniak H, Heling KS, Nicolaides KH (2009) Assessment of intracranial translucency (IT) in the detection of spina bifida at the 11-13-week scan. Ultrasound Obstet Gynecol 34:249–252

    Article  CAS  PubMed  Google Scholar 

  5. Nishino A, Shirane R, So K, Arai H, Suzuki H, Sakurai Y (1998) Cervical myelocystocele with Chiari II malformation: magnetic resonance imaging and surgical treatment. Surg Neurol 49:269–273

    Article  CAS  PubMed  Google Scholar 

  6. Tortori-Donati P, Rossi AMD, Biancheri R (2005) Pediatric neuroradiology. Springer, Berlin [Great Britain]

    Book  Google Scholar 

  7. Stevenson KL (2004) Chiari Type II malformation: past, present, and future. Neurosurg Focus 16, E5

    Article  PubMed  Google Scholar 

  8. Sutton LN, Adzick NS, Bilaniuk LT, Johnson MP, Crombleholme TM, Flake AW (1999) Improvement in hindbrain herniation demonstrated by serial fetal magnetic resonance imaging following fetal surgery for myelomeningocele. JAMA 282:1826–1831

    Article  CAS  PubMed  Google Scholar 

  9. Sutton LN (2008) Fetal surgery for neural tube defects. Best Pract Res Clin Obstet Gynaecol 22:175–188

    Article  PubMed  PubMed Central  Google Scholar 

  10. Adzick NS, Thom EA, Spong CY et al (2011) A randomized trial of prenatal versus postnatal repair of myelomeningocele. N Engl J Med 364:993–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. McLone DG, Knepper PA (1989) The cause of Chiari II malformation: a unified theory. Pediatr Neurosci 15:1–12

    Article  CAS  PubMed  Google Scholar 

  12. McLone DG, Dias MS (2003) The Chiari II malformation: cause and impact. Childs Nerv Syst 19:540–550

    Article  PubMed  Google Scholar 

  13. Sarnat HB (2008) Disorders of segmentation of the neural tube: Chiari malformations. Handb Clin Neurol 87:89–103

    Article  PubMed  Google Scholar 

  14. Sarnat HB (2004) Regional ependymal upregulation of vimentin in Chiari II malformation, aqueductal stenosis, and hydromyelia. Pediatr Dev Pathol 7:48–60

    Article  CAS  PubMed  Google Scholar 

  15. Safra N, Bassuk AG, Ferguson PJ et al (2013) Genome-wide association mapping in dogs enables identification of the homeobox gene, NKX2-8, as a genetic component of neural tube defects in humans. PLoS Genet 9, e1003646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pollack IF, Pang D, Kocoshis S, Putnam P (1992) Neurogenic dysphagia resulting from Chiari malformations. Neurosurgery 30:709–719

    Article  CAS  PubMed  Google Scholar 

  17. Alsaadi MM, Iqbal SM, Elgamal EA, Gozal D (2012) Sleep-disordered breathing in children with Chiari malformation type II and myelomeningocele. Pediatr Int 54:623–626

    Article  PubMed  Google Scholar 

  18. Sieben RL, Hamida MB, Shulman K (1971) Multiple cranial nerve deficits associated with the Arnold-Chiari malformation. Neurology 21:673–681

    Article  CAS  PubMed  Google Scholar 

  19. Ocal E, Irwin B, Cochrane D, Singhal A, Steinbok P (2012) Stridor at birth predicts poor outcome in neonates with myelomeningocele. Childs Nerv Syst 28:265–271

    Article  PubMed  Google Scholar 

  20. Gilbert JN, Jones KL, Rorke LB, Chernoff GF, James HE (1986) Central nervous system anomalies associated with meningomyelocele, hydrocephalus, and the Arnold-Chiari malformation: reappraisal of theories regarding the pathogenesis of posterior neural tube closure defects. Neurosurgery 18:559–564

    Article  CAS  PubMed  Google Scholar 

  21. Boyd PA, Devigan C, Khoshnood B, Loane M, Garne E, Dolk H (2008) Survey of prenatal screening policies in Europe for structural malformations and chromosome anomalies, and their impact on detection and termination rates for neural tube defects and Down's syndrome. BJOG 115:689–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Van den Hof MC, Nicolaides KH, Campbell J, Campbell S (1990) Evaluation of the lemon and banana signs in one hundred thirty fetuses with open spina bifida. Am J Obstet Gynecol 162:322–327

    Article  PubMed  Google Scholar 

  23. Campbell J, Gilbert WM, Nicolaides KH, Campbell S (1987) Ultrasound screening for spina bifida: cranial and cerebellar signs in a high-risk population. Obstet Gynecol 70:247–250

    CAS  PubMed  Google Scholar 

  24. Thomas M (2003) The lemon sign. Radiology 228:206–207

    Article  PubMed  Google Scholar 

  25. D'Addario V, Pinto V, Del Bianco A et al (2001) The clivus-supraocciput angle: a useful measurement to evaluate the shape and size of the fetal posterior fossa and to diagnose Chiari II malformation. Ultrasound Obstet Gynecol 18:146–149

    Article  PubMed  Google Scholar 

  26. D'Addario V, Rossi AC, Pinto V, Pintucci A, Di Cagno L (2008) Comparison of six sonographic signs in the prenatal diagnosis of spina bifida. J Perinat Med 36:330–334

    PubMed  Google Scholar 

  27. Woitek R, Dvorak A, Weber M et al (2014) MR-based morphometry of the posterior fossa in fetuses with neural tube defects of the spine. PLoS One 9, e112585

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chen SC, Simon EM, Haselgrove JC et al (2006) Fetal posterior fossa volume: assessment with MR imaging. Radiology 238:997–1003

    Article  PubMed  Google Scholar 

  29. Lachmann R, Chaoui R, Moratalla J, Picciarelli G, Nicolaides KH (2011) Posterior brain in fetuses with open spina bifida at 11 to 13 weeks. Prenat Diagn 31:103–106

    Article  PubMed  Google Scholar 

  30. Alonso A, Hernan MA (2008) Temporal trends in the incidence of multiple sclerosis: a systematic review. Neurology 71:129–135

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chang Y, Jung TD, Yoo DS, Hyun JK (2010) Diffusion tensor imaging and fiber tractography of patients with cervical spinal cord injury. J Neurotrauma 27:2033–2040

    Article  PubMed  Google Scholar 

  32. Sakai T, Miyagi R, Yamabe E, Fujinaga Y, Bhatia NN, Yoshioka H (2014) Diffusion-weighted imaging and diffusion tensor imaging of asymptomatic lumbar disc herniation. J Med Investig 61:197–203

    Article  Google Scholar 

  33. Eguchi Y, Ohtori S, Orita S et al (2011) Quantitative evaluation and visualization of lumbar foraminal nerve root entrapment by using diffusion tensor imaging: preliminary results. AJNR Am J Neuroradiol 32:1824–1829

    Article  CAS  PubMed  Google Scholar 

  34. Balbi V, Budzik JF, Duhamel A, Bera-Louville A, Le Thuc V, Cotten A (2011) Tractography of lumbar nerve roots: initial results. Eur Radiol 21:1153–1159

    Article  PubMed  Google Scholar 

  35. Jengojan S, Kovar F, Breitenseher J, Weber M, Prayer D, Kasprian G (2015) Acute radial nerve entrapment at the spiral groove: detection by DTI-based neurography. Eur Radiol. doi:10.1007/s00330-014-3562-6

    PubMed  Google Scholar 

  36. Eshetu T, Meoded A, Jallo GI, Carson BS, Huisman TA, Poretti A (2014) Diffusion tensor imaging in pediatric Chiari type I malformation. Dev Med Child Neurol 56:742–748

    Article  PubMed  Google Scholar 

  37. Kasprian G, Brugger PC, Weber M et al (2008) In utero tractography of fetal white matter development. Neuroimage 43:213–224

    Article  PubMed  Google Scholar 

  38. Griffiths PD, Reeves MJ, Morris JE et al (2010) A prospective study of fetuses with isolated ventriculomegaly investigated by antenatal sonography and in utero MR imaging. AJNR Am J Neuroradiol 31:106–111

    Article  CAS  PubMed  Google Scholar 

  39. Watanabe M, Jo J, Radu A, Kaneko M, Tabata Y, Flake AW (2010) A tissue engineering approach for prenatal closure of myelomeningocele with gelatin sponges incorporating basic fibroblast growth factor. Tissue Eng A 16:1645–1655

    Article  CAS  Google Scholar 

  40. Watanabe M, Li H, Roybal J et al (2011) A tissue engineering approach for prenatal closure of myelomeningocele: comparison of gelatin sponge and microsphere scaffolds and bioactive protein coatings. Tissue Eng A 17:1099–1110

    Article  CAS  Google Scholar 

  41. Watanabe M, Kim AG, Flake AW (2014) Tissue Engineering Strategies for Fetal Myelomeningocele Repair in Animal Models. Fetal Diagn Ther. doi:10.1159/000362931

    PubMed  Google Scholar 

  42. Kohl T, Tchatcheva K, Merz W et al (2009) Percutaneous fetoscopic patch closure of human spina bifida aperta: advances in fetal surgical techniques may obviate the need for early postnatal neurosurgical intervention. Surg Endosc 23:890–895

    Article  PubMed  Google Scholar 

  43. Verbeek RJ, Heep A, Maurits NM et al (2012) Fetal endoscopic myelomeningocele closure preserves segmental neurological function. Dev Med Child Neurol 54:15–22

    Article  PubMed  Google Scholar 

  44. Kasprian G, Amann G, Panotopoulos J et al (2014) Peripheral nerve tractography in soft tissue tumors: A preliminary 3-tesla diffusion tensor magnetic resonance imaging study. Muscle Nerve. doi:10.1002/mus.24313

    Google Scholar 

  45. Mukherjee P, Miller JH, Shimony JS et al (2002) Diffusion-tensor MR imaging of gray and white matter development during normal human brain maturation. AJNR Am J Neuroradiol 23:1445–1456

    PubMed  Google Scholar 

  46. Boujraf S, Luypaert R, Shabana W, De Meirleir L, Sourbron S, Osteaux M (2002) Study of pediatric brain development using magnetic resonance imaging of anisotropic diffusion. Magn Reson Imaging 20:327–336

    Article  PubMed  Google Scholar 

  47. Huppi PS, Dubois J (2006) Diffusion tensor imaging of brain development. Semin Fetal Neonatal Med 11:489–497

    Article  PubMed  Google Scholar 

  48. Madler B, Drabycz SA, Kolind SH, Whittall KP, MacKay AL (2008) Is diffusion anisotropy an accurate monitor of myelination? Correlation of multicomponent T2 relaxation and diffusion tensor anisotropy in human brain. Magn Reson Imaging 26:874–888

    Article  PubMed  Google Scholar 

  49. Wimberger DM, Roberts TP, Barkovich AJ, Prayer LM, Moseley ME, Kucharczyk J (1995) Identification of “premyelination” by diffusion-weighted MRI. J Comput Assist Tomogr 19:28–33

    Article  CAS  PubMed  Google Scholar 

  50. Prayer D, Barkovich AJ, Kirschner DA et al (2001) Visualization of nonstructural changes in early white matter development on diffusion-weighted MR images: evidence supporting premyelination anisotropy. AJNR Am J Neuroradiol 22:1572–1576

    CAS  PubMed  Google Scholar 

  51. Mitter C, Kasprian G, Brugger PC, Prayer D (2011) Three-dimensional visualization of fetal white-matter pathways in utero. Ultrasound Obstet Gynecol 37:252–253

    Article  CAS  PubMed  Google Scholar 

  52. Kasprian G, Brugger PC, Schopf V et al (2013) Assessing prenatal white matter connectivity in commissural agenesis. Brain 136:168–179

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The scientific guarantor of this publication is Gregor Kasprian, MD (Senior Author). The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article. The authors state that this work has not received any funding.

Michael Weber (Co-Author) kindly provided statistical advice for this manuscript and has significant statistical expertise. Institutional Review Board approval was obtained. Written informed consent was waived by the Institutional Review Board. Some study subjects or cohorts have been previously reported in Woitek R, Dvorak A, Weber M, et al (2014) MR-based morphometry of the posterior fossa in fetuses with neural tube defects of the spine. PLoS One 9:e112585

Methodology: retrospective, diagnostic study, performed at one institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramona Woitek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woitek, R., Prayer, D., Weber, M. et al. Fetal diffusion tensor quantification of brainstem pathology in Chiari II malformation. Eur Radiol 26, 1274–1283 (2016). https://doi.org/10.1007/s00330-015-3939-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-015-3939-1

Keywords

Navigation