Skip to main content
Log in

Early quantitative CT perfusion parameters variation for prediction of delayed cerebral ischemia following aneurysmal subarachnoid hemorrhage

  • Neuro
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To prospectively evaluate the predictive value of cerebral perfusion–computerized tomography (CTP) parameters variation between day0 and day4 after aneurysmal subarachnoid haemorrhage (aSAH).

Methods

Mean transit time (MTT) and cerebral blood flow (CBF) values were compared between patients with delayed cerebral ischemia (DCI+ group) and patients without DCI (DCI- group) for previously published optimal cutoff values and for variations of MTT (ΔMTT) and of CBF (ΔCBF) values between day0 and day4. DCI+ was defined as a cerebral infarction on 3-months follow-up MRI.

Results

Among 47 included patients, 10 suffered DCI+. Published optimal cutoff values did not predict DCI, either at day0 or at day4. Conversely, ΔMTT and ΔCBF significantly differed between the DCI+ and DCI- groups, with optimal ΔMTT and ΔCBF values of 0.91 seconds (83.9 % sensitivity, 79.5 % specificity, AUC 0.84) and -7.6 mL/100 g/min (100 % sensitivity, 71.4 % specificity, AUC 0.86), respectively. In multivariate analysis, ΔCBF (OR = 1.91, IC95% 1.13–3.23 per each 20 % decrease of ΔCBF) and ΔMTT values (OR = 14.70, IC95% 4.85–44.52 per each 20 % increase of ΔMTT) were independent predictors of DCI.

Conclusions

Assessment of MTT and CBF value variations between day0 and day4 may serve as an early imaging surrogate for prediction of DCI in aSAH.

Key points

CT perfusion values are an imaging surrogate for prediction of DCI.

Early variations (day0day4) after aneurysmal subarachnoid haemorrhage predicted DCI.

A CBF decrease of 7.6 mL/min/100 g predicted DCI with 100 % sensitivity.

An MTT increase of 0.91 seconds predicted DCI with 83.9 % sensitivity.

DCI risk multiplied by 2 per 20 % ΔCBF decrease and by 15 per 20 % ΔMTT increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Roos YB, de Haan RJ, Beenen LF, Groen RJ, Albrecht KW, Vermeulen M (2000) Complications and outcome in patients with aneurysmal subarachnoid haemorrhage: a prospective hospital based cohort study in the Netherlands. J Neurol Neurosurg Psychiatry 68:337–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rabinstein AA, Friedman JA, Weigand SD et al (2004) Predictors of cerebral infarction in aneurysmal subarachnoid hemorrhage. Stroke 35:1862–1866

    Article  PubMed  Google Scholar 

  3. Frontera JA, Fernandez A, Schmidt JM et al (2009) Defining vasospasm after subarachnoid hemorrhage: what is the most clinically relevant definition? Stroke 40:1963–1968

    Article  PubMed  Google Scholar 

  4. Vergouwen MD, Vermeulen M, van Gijn J et al (2010) Definition of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage as an outcome event in clinical trials and observational studies: proposal of a multidisciplinary research group. Stroke 41:2391–2395

    Article  PubMed  Google Scholar 

  5. van Gijn J, Kerr RS, Rinkel GJ (2007) Subarachnoid haemorrhage. Lancet 369:306–318

    Article  PubMed  Google Scholar 

  6. Hackett ML, Anderson CS (2000) Health outcomes 1 year after subarachnoid hemorrhage: an international population-based study. Aust Coop Res Subarachnoid Hemorrhage Study Group Neurol 55:658–662

    CAS  Google Scholar 

  7. Ohkuma H, Manabe H, Tanaka M, Suzuki S (2000) Impact of cerebral microcirculatory changes on cerebral blood flow during cerebral vasospasm after aneurysmal subarachnoid hemorrhage. Stroke 31:1621–1627

    Article  CAS  PubMed  Google Scholar 

  8. Wintermark M, Ko NU, Smith WS, Liu S, Higashida RT, Dillon WP (2006) Vasospasm after subarachnoid hemorrhage: utility of perfusion CT and CT angiography on diagnosis and management. AJNR Am J Neuroradiol 27:26–34

    CAS  PubMed  Google Scholar 

  9. Dankbaar JW, de Rooij NK, Rijsdijk M et al (2010) Diagnostic threshold values of cerebral perfusion measured with computed tomography for delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Stroke 41:1927–1932

    Article  PubMed  Google Scholar 

  10. Sanelli PC, Jou A, Gold R et al (2011) Using CT perfusion during the early baseline period in aneurysmal subarachnoid hemorrhage to assess for development of vasospasm. Neuroradiology 53:425–434

    Article  PubMed  Google Scholar 

  11. Mir DI, Gupta A, Dunning A et al (2014) CT perfusion for detection of delayed cerebral ischemia in aneurysmal subarachnoid hemorrhage: a systematic review and meta-analysis. AJNR Am J Neuroradiol 35:866–871

    Article  CAS  PubMed  Google Scholar 

  12. Kudo K, Sasaki M, Yamada K et al (2010) Differences in CT perfusion maps generated by different commercial software: quantitative analysis by using identical source data of acute stroke patients. Radiology 254:200–209

    Article  PubMed  Google Scholar 

  13. Zussman BM, Boghosian G, Gorniak RJ et al (2011) The relative effect of vendor variability in CT perfusion results: a method comparison study. AJR Am J Roentgenol 197:468–473

    Article  PubMed  Google Scholar 

  14. Fahmi F, Marquering HA, Streekstra GJ et al (2012) Differences in CT perfusion summary maps for patients with acute ischemic stroke generated by 2 software packages. AJNR Am J Neuroradiol 33:2074–2080

    Article  CAS  PubMed  Google Scholar 

  15. Kudo K, Sasaki M, Ogasawara K, Terae S, Ehara S, Shirato H (2009) Difference in tracer delay-induced effect among deconvolution algorithms in CT perfusion analysis: quantitative evaluation with digital phantoms. Radiology 251:241–249

    Article  PubMed  Google Scholar 

  16. Sanelli PC, Anumula N, Johnson CE et al (2013) Evaluating CT perfusion using outcome measures of delayed cerebral ischemia in aneurysmal subarachnoid hemorrhage. AJNR Am J Neuroradiol 34:292–298

    Article  CAS  PubMed  Google Scholar 

  17. Dankbaar JW, de Rooij NK, Velthuis BK, Frijns CJ, Rinkel GJ, van der Schaaf IC (2009) Diagnosing delayed cerebral ischemia with different CT modalities in patients with subarachnoid hemorrhage with clinical deterioration. Stroke 40:3493–3498

    Article  PubMed  Google Scholar 

  18. Eastwood JD, Lev MH, Azhari T et al (2002) CT perfusion scanning with deconvolution analysis: pilot study in patients with acute middle cerebral artery stroke. Radiology 222:227–236

    Article  PubMed  Google Scholar 

  19. Laslo AM, Eastwood JD, Pakkiri P, Chen F, Lee TY (2008) CT perfusion-derived mean transit time predicts early mortality and delayed vasospasm after experimental subarachnoid hemorrhage. AJNR Am J Neuroradiol 29:79–85

    Article  CAS  PubMed  Google Scholar 

  20. Nabavi DG, LeBlanc LM, Baxter B et al (2001) Monitoring cerebral perfusion after subarachnoid hemorrhage using CT. Neuroradiology 43:7–16

    Article  CAS  PubMed  Google Scholar 

  21. Knuckey NW, Fox RA, Surveyor I, Stokes BA (1985) Early cerebral blood flow and computerized tomography in predicting ischemia after cerebral aneurysm rupture. J Neurosurg 62:850–855

    Article  CAS  PubMed  Google Scholar 

  22. Milburn JM, Moran CJ, Cross DT 3rd, Diringer MN, Pilgram TK, Dacey RG Jr (1997) Effect of intraarterial papaverine on cerebral circulation time. AJNR Am J Neuroradiol 18:1081–1085

    CAS  PubMed  Google Scholar 

  23. Emmer BJ, Rijkee M, Niesten JM, Wermer MJ, Velthuis BK, van Walderveen MA (2014) Whole brain CT perfusion in acute anterior circulation ischemia: coverage size matters. Neuroradiology

  24. Abels B, Villablanca JP, Tomandl BF, Uder M, Lell MM (2012) Acute stroke: a comparison of different CT perfusion algorithms and validation of ischaemic lesions by follow-up imaging. Eur Radiol 22:2559–2567

    Article  PubMed  Google Scholar 

  25. Sasaki M, Kudo K, Boutelier T et al (2013) Assessment of the accuracy of a Bayesian estimation algorithm for perfusion CT by using a digital phantom. Neuroradiology 55:1197–1203

    Article  PubMed  Google Scholar 

  26. Imanishi Y, Fukui A, Niimi H et al (2005) Radiation-induced temporary hair loss as a radiation damage only occurring in patients who had the combination of MDCT and DSA. Eur Radiol 15:41–46

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The scientific guarantor of this publication is Olivier Naggara. The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article. The authors state that this work has not received any funding. No complex statistical methods were necessary for this paper. Institutional review board approval was obtained. Written informed consent was obtained for each patient. No study subjects or cohorts have been previously reported. Methodology: prospective, diagnostic or prognostic study, performed at one institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Naggara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodriguez-Régent, C., Hafsa, M., Turc, G. et al. Early quantitative CT perfusion parameters variation for prediction of delayed cerebral ischemia following aneurysmal subarachnoid hemorrhage. Eur Radiol 26, 2956–2963 (2016). https://doi.org/10.1007/s00330-015-4135-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-015-4135-z

Keywords

Navigation