Skip to main content

Advertisement

Log in

Intravoxel incoherent motion MR imaging for breast lesions: comparison and correlation with pharmacokinetic evaluation from dynamic contrast-enhanced MR imaging

  • Breast
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To compare diagnostic performance for breast lesions by quantitative parameters derived from intravoxel incoherent motion (IVIM) and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) and to explore whether correlations exist between these parameters.

Methods

IVIM and DCE MRI were performed on a 1.5-T MRI scanner in patients with suspicious breast lesions. Thirty-six breast cancers and 23 benign lesions were included in the study. Quantitative parameters from IVIM (D, f and D*) and DCE MRI (Ktrans, Kep, Ve and Vp) were calculated and compared between malignant and benign lesions. Spearman correlation test was used to evaluate correlations between them.

Results

D, f, D* from IVIM and Ktrans, Kep, Vp from DCE MRI were statistically different between breast cancers and benign lesions (p < 0.05, respectively) and D demonstrated the largest area under the receiver-operating characteristic curve (AUC = 0.917) and had the highest specificity (83 %). The f value was moderately statistically correlated with Vp (r = 0.692) and had a poor correlation with Ktrans (r = 0.456).

Conclusions

IVIM MRI is useful in the differentiation of breast lesions. Significant correlations were found between perfusion-related parameters from IVIM and DCE MRI. IVIM may be a useful adjunctive tool to standard MRI in diagnosing breast cancer.

Key Points

IVIM provided diffusion as well as perfusion information

IVIM could help differential diagnosis of breast lesions

Correlations were found between perfusion-related parameters from IVIM and DCE MRI

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

IVIM:

Intravoxel incoherent motion

DCE:

Dynamic contrast-enhanced

AUC:

Area under the curve

AIF:

Arterial input function

DWI:

Diffusion-weighted imaging

TR:

Repetition time

TE:

Echo time

FOV:

Field of view

FFE:

Fast field echo

ICC:

Intraclass correlation coefficient

References

  1. Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62:10–29

    Article  PubMed  Google Scholar 

  2. Aberle DR, Chiles C, Gatsonis C et al (2005) Imaging and cancer: research strategy of the american college of radiology imaging network. Radiology 235:741–751

    Article  PubMed  Google Scholar 

  3. Koo HR, Cho N, Song IC et al (2012) Correlation of perfusion parameters on dynamic contrast-enhanced MRI with prognostic factors and subtypes of breast cancers. J Magn Reson Imaging 36:145–151

    Article  PubMed  Google Scholar 

  4. Ei Khouli RH, Jacobs MA, Mezban SD et al (2010) Diffusion-weighted imaging improves the diagnostic accuracy of conventional 3.0-T breast MR imaging. Radiology 256:64–73

    Article  PubMed  PubMed Central  Google Scholar 

  5. Partridge SC, Demartini WB, Kurland BF et al (2010) Differential diagnosis of mammographically and clinically occult breast lesions on diffusion-weighted MRI. J Magn Reson Imaging 31:562–570

    Article  PubMed  Google Scholar 

  6. Lehman CD (2012) Diffusion weighted imaging (DWI) of the breast: ready for clinical practice? Eur J Radiol 81:S80–S81

    Article  PubMed  Google Scholar 

  7. Chen X, Li W, Zhang Y et al (2010) Meta-analysis of quantitative diffusion-weighted MR imaging in the differential diagnosis of breast lesions. BMC Cancer 10:693

    Article  PubMed  PubMed Central  Google Scholar 

  8. Peters NHGM, Borel Rinkes IHM, Zuithoff NPA et al (2008) Meta-analysis of MR imaging in the diagnosis of breast lesions. Radiology 246:116–124

    Article  PubMed  Google Scholar 

  9. Le Bihan D, Breton E, Lallemand D et al (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161:401–407

    Article  PubMed  Google Scholar 

  10. Zhang Y-D, Wang Q, Wu C-J et al (2015) The histogram analysis of diffusion-weighted intravoxel incoherent motion (IVIM) imaging for differentiating the gleason grade of prostate cancer. Eur Radiol 25:994–1004

    Article  PubMed  Google Scholar 

  11. Eckerbom P, Hansell P, Bjerner T et al (2013) Intravoxel incoherent motion MR imaging of the kidney: pilot study. Adv Exp Med Biol 765:55–58

    Article  CAS  PubMed  Google Scholar 

  12. Guiu B, Petit J-M, Capitan V et al (2012) Intravoxel incoherent motion diffusion-weighted imaging in nonalcoholic fatty liver disease: a 3.0-T MR study. Radiology 265:96–103

    Article  PubMed  Google Scholar 

  13. Luciani A, Vignaud A, Cavet M et al (2008) Liver cirrhosis: intravoxel incoherent motion MR imaging—pilot study. Radiology 249:891–899

    Article  PubMed  Google Scholar 

  14. Sumi M, Van Cauteren M, Sumi T et al (2012) Salivary gland tumors: use of intravoxel incoherent motion MR imaging for assessment of diffusion and perfusion for the differentiation of benign from malignant tumors. Radiology 263:770–777

    Article  PubMed  Google Scholar 

  15. Alison M, Chalouhi GE, Autret G et al (2013) Use of intravoxel incoherent motion MR imaging to assess placental perfusion in a murine model of placental insufficiency. Investig Radiol 48:17–23

    Article  Google Scholar 

  16. Sumi M, Nakamura T (2014) Head and neck tumours: combined MRI assessment based on IVIM and TIC analyses for the differentiation of tumors of different histological types. Eur Radiol 24:223–231

    Article  PubMed  Google Scholar 

  17. Zhang S, Jia Q, Zhang Z et al (2014) Intravoxel incoherent motion MRI: emerging applications for nasopharyngeal carcinoma at the primary site. Eur Radiol 24:1998–2004

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jia Q-J, Zhang S-X, Chen W-B et al (2014) Initial experience of correlating parameters of intravoxel incoherent motion and dynamic contrast-enhanced magnetic resonance imaging at 3.0 T in nasopharyngeal carcinoma. Eur Radiol 24:3076–3087

    Article  PubMed  Google Scholar 

  19. Wang L, Lin J, Liu K et al (2014) Intravoxel incoherent motion diffusion-weighted MR imaging in differentiation of lung cancer from obstructive lung consolidation: comparison and correlation with pharmacokinetic analysis from dynamic contrast-enhanced MR imaging. Eur Radiol 24:1914–1922

    Article  PubMed  Google Scholar 

  20. Liu C, Liang C, Liu Z, et al. (2013) Intravoxel incoherent motion (IVIM) in evaluation of breast lesions: comparison with conventional DWI. Eur J Radiol 82:e782–789

  21. Sigmund EE, Cho GY, Kim S et al (2011) Intravoxel incoherent motion imaging of tumor microenvironment in locally advanced breast cancer. Magn Reson Med 65:1437–1447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bokacheva L, Kaplan JB, Giri DD et al (2014) Intravoxel incoherent motion diffusion-weighted MRI at 3.0 T differentiates malignant breast lesions from benign lesions and breast parenchyma. J Magn Reson Imaging 40:813–823

    Article  PubMed  Google Scholar 

  23. Tamura T, Usui S, Murakami S et al (2012) Comparisons of multi b-value DWI signal analysis with pathological specimen of breast cancer. Magn Reson Med 68:890–897

    Article  PubMed  Google Scholar 

  24. Pang Y, Turkbey B, Bernardo M et al (2013) Intravoxel incoherent motion MR imaging for prostate cancer: an evaluation of perfusion fraction and diffusion coefficient derived from different b-value combinations. Magn Reson Med 69:553–562

    Article  PubMed  Google Scholar 

  25. Tofts PS, Brix G, Buckley DL et al (1999) Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 10:223–232

    Article  CAS  PubMed  Google Scholar 

  26. Murase K (2004) Efficient method for calculating kinetic parameters using T1-weighted dynamic contrast-enhanced magnetic resonance imaging. Magn Reson Med 51:858–862

    Article  PubMed  Google Scholar 

  27. Benjaminsen IC, Graff BA, Brurberg KG, Rofstad EK (2004) Assessment of tumor blood perfusion by high-resolution dynamic contrast-enhanced MRI: a preclinical study of human melanoma xenografts. Magn Reson Med 52:269–276

    Article  PubMed  Google Scholar 

  28. Iima M, Yano K, Kataoka M et al (2015) Quantitative non-gaussian diffusion and intravoxel incoherent motion magnetic resonance imaging: differentiation of malignant and benign breast lesions. Investig Radiol 50:205–211

    Article  Google Scholar 

  29. Partridge SC, McDonald ES (2013) Diffusion weighted magnetic resonance imaging of the breast: protocol optimization, interpretation, and clinical applications. Magn Reson Imaging Clin N Am 21:601–624

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tamura T, Usui S, Murakami S et al (2010) Biexponential signal attenuation analysis of diffusion-weighted imaging of breast. Magn Reson Med Sci 9:195–207

    Article  PubMed  Google Scholar 

  31. Le Bihan D, Breton E, Lallemand D et al (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168:497–505

    Article  PubMed  Google Scholar 

  32. Ma Z-S, Wang D-W, Sun X-B et al (2015) Quantitative analysis of 3-Tesla magnetic resonance imaging in the differential diagnosis of breast lesions. Exp Ther Med 9:913–918

    PubMed  Google Scholar 

  33. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62

    Article  CAS  PubMed  Google Scholar 

  34. Tofts PS (1997) Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging 7:91–101

    Article  CAS  PubMed  Google Scholar 

  35. Baek H-M, Chen J-H, Nie K et al (2009) Predicting pathologic response to neoadjuvant chemotherapy in breast cancer by using MR imaging and quantitative 1H MR spectroscopy. Radiology 251:653–662

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wirestam R, Borg M, Brockstedt S et al (2001) Perfusion-related parameters in intravoxel incoherent motion MR imaging compared with CBV and CBF measured by dynamic susceptibility-contrast MR technique. Acta Radiol 42:123–128

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The scientific guarantor of this publication is Changhong Liang. The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article. This study has received funding from the Medical Scientific Research Foundation of Guangdong Province, China (A2012040), the National Scientific Foundation of China (No. 81271596, No. 81271654) and Science and Technology Planning Project of Guangdong Province, China (2014A020212232 and 2012B031800405). Shuixing Zhang kindly provided statistical advice for this manuscript. No complex statistical methods were necessary for this paper. Institutional Review Board approval was obtained. Written informed consent was obtained from all subjects (patients) in this study. No study subjects have been previously reported. Methodology: prospective, cross sectional study, performed at one institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changhong Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Wang, K., Chan, Q. et al. Intravoxel incoherent motion MR imaging for breast lesions: comparison and correlation with pharmacokinetic evaluation from dynamic contrast-enhanced MR imaging. Eur Radiol 26, 3888–3898 (2016). https://doi.org/10.1007/s00330-016-4241-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-016-4241-6

Keywords

Navigation