Skip to main content
Log in

Non-enhanced magnetic resonance imaging of unruptured intracranial aneurysms at 7 Tesla: Comparison with digital subtraction angiography

  • Magnetic Resonance
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Purpose

To prospectively evaluate non-contrast-enhanced 7-Tesla (T) MRA for delineation of unruptured intracranial aneurysms (UIAs) in comparison with DSA.

Material and methods

Forty patients with single or multiple UIAs were enrolled in this IRB-approved trial. Sequences acquired at 7 T were TOF MRA and non-contrast-enhanced MPRAGE. All patients additionally underwent 3D rotational DSA. Two neuroradiologists individually analysed the following aneurysm and image features on a five-point scale in 2D and 3D image reconstructions: delineation of parent vessel, dome and neck; overall image quality; presence of artefacts. Interobserver accordance was assessed by the kappa coefficient.

Results

A total of 64 UIAs were detected in DSA and in all 2D and 3D MRA image reconstructions. Ratings showed comparable results for DSA and 7-T MRA when considering all image reconstructions. Highest ratings for individual image reconstructions were given for 2D MPRAGE and 3D TOF MRA. Interobserver accordance was almost perfect for the majority of ratings.

Conclusion

This study demonstrates excellent delineation of UIAs using 7-T MRA within a clinical setting comparable to the gold standard, DSA. The combination of 7-T non-enhanced MPRAGE and TOF MRA for assessment of untreated UIAs is a promising clinical application of ultra-high-field MRA.

Key Points

Non-enhanced 7-T MRA allowed excellent delineation of unruptured intracranial aneurysms (UIAs).

Image quality at 7-T was comparable with DSA considering both sequences.

Assessment of UIAs is a promising clinical application of ultra-high-field MRA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

7-T:

7-Tesla

CNR:

Contrast-to-noise ratio

DSA:

Digital subtraction angiography

FWER:

Familywise error rate

GRAPPA:

Generalized Autocalibrating Partial Parallel Acquisition

MPRAGE:

Magnetization-prepared rapid acquisition gradient-echo

MRA:

Magnetic resonance angiography

PACS:

Picture Archiving and Communication System

RF:

Radiofrequency

SAH:

Subarachnoid haemorrhage

SEM:

Standard error of mean

SNR:

Signal-to-noise ratio

TOF:

Time-of-flight

TONE:

Tilt-optimized non-saturated excitation

UIA:

Unruptured intracranial aneurysm

References

  1. Fogelholm R, Hernesniemi J, Vapalahti M (1993) Impact of early surgery on outcome after aneurysmal subarachnoid hemorrhage. A population-based study. Stroke 24:1649–1654

    Article  CAS  PubMed  Google Scholar 

  2. Passier PE, Visser-Meily JM, Rinkel GJ, Lindeman E, Post MW (2011) Life satisfaction and return to work after aneurysmal subarachnoid hemorrhage. J Stroke Cerebrovasc Dis 20:324–329

    Article  PubMed  Google Scholar 

  3. Rinkel GJE, Algra A (2011) Long-term outcomes of patients with aneurysmal subarachnoid haemorrhage. Lancet Neurol 10:349–356

    Article  PubMed  Google Scholar 

  4. Kashiwazaki D, Kuroda S, on behalf of the Sapporo SAHSG (2013) Size ratio Can highly predict rupture risk in intracranial small (<5 mm) aneurysms. Stroke. doi:10.1161/STROKEAHA.113.001138

    Google Scholar 

  5. Lawson MF, Neal DW, Mocco J, Hoh BL (2013) Rationale for treating unruptured intracranial aneurysms: actuarial analysis of natural history risk versus treatment risk for coiling or clipping based on 14,050 patients in the nationwide inpatient sample database. World Neurosurg 79:472–478

    Article  PubMed  Google Scholar 

  6. Steinberg GK (2013) Controversy: clipping of asymptomatic intracranial aneurysm that is <7 mm: Yes. Stroke 44:S97–S99

    Article  PubMed  Google Scholar 

  7. Kaufmann TJ, Huston J 3rd, Mandrekar JN, Schleck CD, Thielen KR, Kallmes DF (2007) Complications of diagnostic cerebral angiography: evaluation of 19,826 consecutive patients. Radiology 243:812–819

    Article  PubMed  Google Scholar 

  8. Willinsky RA, Taylor SM, TerBrugge K, Farb RI, Tomlinson G, Montanera W (2003) Neurologic complications of cerebral angiography: prospective analysis of 2,899 procedures and review of the literature. Radiology 227:522–528

    Article  PubMed  Google Scholar 

  9. Chung TS, Joo JY, Lee SK, Chien D, Laub G (1999) Evaluation of cerebral aneurysms with high-resolution MR angiography using a section-interpolation technique: correlation with digital subtraction angiography. AJNR Am J Neuroradiol 20:229–235

    CAS  PubMed  Google Scholar 

  10. Okahara M (2002) Diagnostic accuracy of magnetic resonance angiography for cerebral aneurysms in correlation with 3D-digital subtraction angiographic images: a study of 133 aneurysms. Stroke 33:1803–1808

    Article  PubMed  Google Scholar 

  11. White PM, Teasdale EM, Wardlaw JM, Easton V (2001) Intracranial aneurysms: CT angiography and MR angiography for detection prospective blinded comparison in a large patient cohort. Radiology 219:739–749

    Article  CAS  PubMed  Google Scholar 

  12. White PM, Teadsale E, Wardlaw JM, Easton V (2001) What is the most sensitive non-invasive imaging strategy for the diagnosis of intracranial aneurysms? J Neurol Neurosurg Psychiatry 71:322–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shahzad R, Younas F (2011) Detection and characterization of intracranial aneurysms: Magnetic resonance angiography versus digital subtraction angiography. J Coll Physicians Surg Pak 21:325–329

    PubMed  Google Scholar 

  14. Nakiri GS, Santos AC, Abud TG, Aragon DC, Colli BO, Abud DG (2011) A comparison between magnetic resonance angiography at 3 teslas (time-of-flight and contrastenhanced) and flat-panel digital subtraction angiography in the assessment of embolized brain aneurysms. Clinics 66:641–648

    Article  PubMed  PubMed Central  Google Scholar 

  15. Monninghoff C, Maderwald S, Theysohn JM et al (2009) Evaluation of intracranial aneurysms with 7 T versus 1.5 T time-of-flight MR angiography - initial experience. RoFo: Fortschr Geb Rontgenstr Nuklearmed 181:16–23

    Article  CAS  Google Scholar 

  16. Ferré JC, Carsin-Nicol B, Morandi X et al (2009) Time-of-flight MR angiography at 3 T versus digital subtraction angiography in the imaging follow-up of 51 intracranial aneurysms treated with coils. Eur J Radiol 72:365–369

    Article  PubMed  Google Scholar 

  17. Johst S, Wrede KH, Ladd ME, Maderwald S (2012) Time-of-flight magnetic resonance angiography at 7 T using venous saturation pulses with reduced flip angles. Invest Radiol 47:445–450

    Article  PubMed  Google Scholar 

  18. Schmitter S, Bock M, Johst S, Auerbach EJ, Ugurbil K, Van de Moortele PF (2012) Contrast enhancement in TOF cerebral angiography at 7 T using saturation and MT pulses under SAR constraints: impact of VERSE and sparse pulses. Magn Reson Med 68:188–197

    Article  PubMed  Google Scholar 

  19. Matsushige T, Chen B, Dammann P et al (2015) Microanatomy of the subcallosal artery: an in-vivo 7 T magnetic resonance angiography study. Eur Radiol. doi:10.1007/s00330-015-4117-1

    PubMed  Google Scholar 

  20. Wrede KH, Dammann P, Johst S et al (2015) Non-enhanced MR imaging of cerebral arteriovenous malformations at 7 Tesla. Eur Radiol. doi:10.1007/s00330-015-3875-0

    Google Scholar 

  21. Wrede KH, Dammann P, Mönninghoff C et al (2014) Non-enhanced MR imaging of cerebral aneurysms: 7 Tesla versus 1.5 Tesla. PLoS One 9:e84562

    Article  PubMed  PubMed Central  Google Scholar 

  22. Martin-Vaquero P, da Costa RC, Echandi RL, Tosti CL, Knopp MV, Sammet S (2011) Time-of-flight magnetic resonance angiography of the canine brain at 3.0 Tesla and 7.0 Tesla. Am J Vet Res 72:350–356

    Article  PubMed  Google Scholar 

  23. Heverhagen JT, Bourekas E, Sammet S, Knopp MV, Schmalbrock P (2008) Time-of-flight magnetic resonance angiography at 7 Tesla. Invest Radiol 43:568–573

    Article  PubMed  Google Scholar 

  24. Wrede KH, Johst S, Dammann P et al (2014) Improved cerebral time-of-flight magnetic resonance angiography at 7 Tesla – feasibility study and preliminary results using optimized venous saturation pulses. PLoS One 9, e106697

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wrede KH, Johst S, Dammann P et al (2012) Caudal image contrast inversion in MPRAGE at 7 Tesla problem and solution. Acad Radiol 19:172–178

    Article  PubMed  Google Scholar 

  26. Tustison NJ, Avants BB, Cook PA et al (2010) N4ITK: improved N3 bias correction. IEEE Trans Med Imaging 29:1310–1320

    Article  PubMed  PubMed Central  Google Scholar 

  27. Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20:37–46

    Article  Google Scholar 

  28. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174

    Article  CAS  PubMed  Google Scholar 

  29. Bendszus M, Koltzenburg M, Burger R, Warmuth-Metz M, Hofmann E, Solymosi L (1999) Silent embolism in diagnostic cerebral angiography and neurointerventional procedures: a prospective study. Lancet 354:1594–1597

    Article  CAS  PubMed  Google Scholar 

  30. Fiehler J (2012) Unruptured brain aneurysms: when to screen and when to treat? Rofo 184:97–104

    Article  CAS  PubMed  Google Scholar 

  31. Gibbs GF, Huston J 3rd, Bernstein MA, Riederer SJ, Brown RD Jr (2004) Improved image quality of intracranial aneurysms: 3.0-T versus 1.5-T time-of-flight MR angiography. Am J Neuroradiol 25:84–87

    PubMed  Google Scholar 

  32. Edelstein WA, Glover GH, Hardy CJ, Redington RW (1986) The intrinsic signal-to-noise ratio in NMR imaging. Magn Reson Med 3:604–618

    Article  CAS  PubMed  Google Scholar 

  33. Majoie CBLM, Sprengers ME, Van Rooij WJJ et al (2005) MR angiography at 3T versus digital subtraction angiography in the follow-up of intracranial aneurysms treated with detachable coils. Am J Neuroradiol 26:1349–1356

    PubMed  Google Scholar 

  34. Umutlu L, Theysohn N, Maderwald S et al (2013) 7 Tesla MPRAGE imaging of the intracranial arterial vasculature: nonenhanced versus contrast-enhanced. Acad Radiol 20:628–634

    Article  PubMed  Google Scholar 

  35. Dammann P, Breyer T, Wrede KH et al (2014) Treatment of complex neurovascular lesions: an interdisciplinary angio suite approach. Ther Adv Neurol Disord 7:60–70

    Article  PubMed  PubMed Central  Google Scholar 

  36. Grinstead JW, Rooney W, Laub G (2010) The origins of bright blood MPRAGE at 7 Tesla and a simultaneous method for T1 imaging and Non-contrast MRA. Proc Intl Soc Mag Reson Med 18:1429

    Google Scholar 

  37. Dammann P, Wrede KH, Maderwald S et al (2012) The venous angioarchitecture of sporadic cerebral cavernous malformations: a susceptibility weighted imaging study at 7 T MRI. J Neurol Neurosurg Psychiatry. doi:10.1136/jnnp-2012-302599

    PubMed  Google Scholar 

  38. Zwanenburg JJ, Hendrikse J, Takahara T, Visser F, Luijten PR (2008) MR angiography of the cerebral perforating arteries with magnetization prepared anatomical reference at 7 T: comparison with time-of-flight. J Magn Reson Imaging 28:1519–1526

    Article  PubMed  Google Scholar 

  39. Kraff O, Wrede KH, Schoemberg T et al (2013) MR safety assessment of potential RF heating from cranial fixation plates at 7 T. Med Phys 40:042302

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The scientific guarantor of this publication is Dr. Karsten H. Wrede. The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article. This study has received funding by University Duisburg Essen (IFORES grant). Dr. Ulrike Krahn kindly provided statistical advice for this manuscript. Institutional Review Board approval was obtained. Written informed consent was obtained from all subjects (patients) in this study. Methodology: prospective, observational, multicentre study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karsten H. Wrede.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wrede, K.H., Matsushige, T., Goericke, S.L. et al. Non-enhanced magnetic resonance imaging of unruptured intracranial aneurysms at 7 Tesla: Comparison with digital subtraction angiography. Eur Radiol 27, 354–364 (2017). https://doi.org/10.1007/s00330-016-4323-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-016-4323-5

Keywords

Navigation