Skip to main content

Advertisement

Log in

Prognosis prediction of non-enhancing T2 high signal intensity lesions in glioblastoma patients after standard treatment: application of dynamic contrast-enhanced MR imaging

  • Neuro
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To identify candidate imaging biomarkers for early disease progression in glioblastoma multiforme (GBM) patients by analysis of dynamic contrast-enhanced (DCE) MR parameters of non-enhancing T2 high signal intensity (SI) lesions.

Methods

Forty-nine GBM patients who had undergone preoperative DCE MR imaging and received standard treatment were retrospectively included. According to the Response Assessment in Neuro-Oncology criteria, patients were classified into progression (n = 21) or non-progression (n = 28) groups. We analysed the pharmacokinetic parameters of Ktrans, Ve and Vp within non-enhancing T2 high SI lesions of each tumour. The best percentiles of each parameter from cumulative histograms were identified by the area under the receiver operating characteristic curve (AUC) and were compared using multivariate stepwise logistic regression.

Results

For the differentiation of early disease progression, the highest AUC values were found in the 99th percentile of Ktrans (AUC 0.954), the 97th percentile of Ve (AUC 0.815) and the 94th percentile of Vp (AUC 0.786) (all p < 0.05). The 99th percentile of Ktrans was the only significant independent variable from the multivariate stepwise logistic regression (p = 0.002).

Conclusions

We found that the Ktrans of non-enhancing T2 high SI lesions in GBM patients holds potential as a candidate prognostic marker in future prospective studies.

Key Points

DCE MR imaging provides candidate prognostic marker of GBM after standard treatment.

Cumulative histogram was applied to include entire non-enhancing T2 high SI lesions.

The 99th percentile value of Ktrans was the most likely potential biomarker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AUC:

Area under the receiver operating characteristic curve

DCE:

Dynamic contrast-enhanced

GBM:

Glioblastoma multiforme

Ktrans:

Volume transfer constant

RANO:

Response Assessment in Neuro-Oncology

Ve:

Extravascular extracellular space per unit volume of tissue

Vp:

Blood plasma volume per unit volume of tissue

References

  1. Brandsma D, van den Bent MJ (2009) Pseudoprogression and pseudoresponse in the treatment of gliomas. Curr Opin Neurol 22:633–638

    Article  PubMed  Google Scholar 

  2. Norden AD, Drappatz J, Muzikansky A et al (2009) An exploratory survival analysis of anti-angiogenic therapy for recurrent malignant glioma. J Neurooncol 92:149–155

    Article  CAS  PubMed  Google Scholar 

  3. Wen PY, Macdonald DR, Reardon DA et al (2010) Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 28:1963–1972

    Article  PubMed  Google Scholar 

  4. Barajas RF Jr, Phillips JJ, Parvataneni R et al (2012) Regional variation in histopathologic features of tumor specimens from treatment-naive glioblastoma correlates with anatomic and physiologic MR imaging. Neuro Oncol 14:942–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  CAS  PubMed  Google Scholar 

  6. Stupp R, Hegi ME, Mason WP et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466

    Article  CAS  PubMed  Google Scholar 

  7. Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 7:392–401

    Article  CAS  PubMed  Google Scholar 

  8. Idoate MA, Diez Valle R, Echeveste J, Tejada S (2011) Pathological characterization of the glioblastoma border as shown during surgery using 5-aminolevulinic acid-induced fluorescence. Neuropathology 31:575–582

    Article  PubMed  Google Scholar 

  9. Gaspar LE, Fisher BJ, Macdonald DR et al (1992) Supratentorial malignant glioma: patterns of recurrence and implications for external beam local treatment. Int J Radiat Oncol Biol Phys 24:55–57

    Article  CAS  PubMed  Google Scholar 

  10. Jain R (2013) Measurements of tumor vascular leakiness using DCE in brain tumors: clinical applications. NMR Biomed 26:1042–1049

    Article  PubMed  Google Scholar 

  11. Jung SC, Yeom JA, Kim JH et al (2014) Glioma: application of histogram analysis of pharmacokinetic parameters from T1-weighted dynamic contrast-enhanced MR imaging to tumor grading. Am J Neuroradiol 35:1103–1110

    Article  CAS  PubMed  Google Scholar 

  12. Cao Y, Nagesh V, Hamstra D et al (2006) The extent and severity of vascular leakage as evidence of tumor aggressiveness in high-grade gliomas. Cancer Res 66:8912–8917

    Article  CAS  PubMed  Google Scholar 

  13. Jia Z, Geng D, Xie T, Zhang J, Liu Y (2012) Quantitative analysis of neovascular permeability in glioma by dynamic contrast-enhanced MR imaging. J Clin Neurosci 19:820–823

    Article  PubMed  Google Scholar 

  14. Khalifa J, Tensaouti F, Chaltiel L et al (2016) Identification of a candidate biomarker from perfusion MRI to anticipate glioblastoma progression after chemoradiation. Eur Radiol. doi:10.1007/s00330-016-4234-5

    PubMed  Google Scholar 

  15. Castellano A, Donativi M, Rudà R et al (2016) Evaluation of low-grade glioma structural changes after chemotherapy using DTI-based histogram analysis and functional diffusion maps. Eur Radiol 26:1263–1273

    Article  PubMed  Google Scholar 

  16. Yoon RG, Kim HS, Kim DY, Hong GS, Kim SJ (2016) Apparent diffusion coefficient parametric response mapping MRI for follow-up of glioblastoma. Eur Radiol 26:1037–1047

    Article  PubMed  Google Scholar 

  17. Tofts PS, Kermode AG (1991) Measurement of the blood brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med 17:357–367

    Article  CAS  PubMed  Google Scholar 

  18. Haacke EM, Filleti CL, Gattu R et al (2007) New algorithm for quantifying vascular changes in dynamic contrast‐enhanced MRI independent of absolute T1 values. Magn Reson Med 58:463–472

    Article  PubMed  Google Scholar 

  19. Pluim JP, Maintz JA, Viergever M (2003) Mutual-information-based registration of medical images: a survey. IEEE Trans Med Imaging 22:986–1004

    Article  PubMed  Google Scholar 

  20. Sundar H, Shen D, Biros G, Xu C, Davatzikos C (2007) Robust computation of mutual information using spatially adaptive meshes. Med Image Comput Comput Assist Interv 10:950–958

    PubMed  Google Scholar 

  21. Jung SC, Choi SH, Yeom JA et al (2013) Cerebral blood volume analysis in glioblastomas using dynamic susceptibility contrast-enhanced perfusion MRI: a comparison of manual and semiautomatic segmentation methods. PLoS One 8, e69323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tozer DJ, Jäger HR, Danchaivijitr N et al (2007) Apparent diffusion coefficient histograms may predict low‐grade glioma subtype. NMR Biomed 20:49–57

    Article  PubMed  Google Scholar 

  23. Man MZ, Dyson G, Johnson K, Liao B (2004) Evaluating methods for classifying expression data. J Biopharm Stat 14:1065–1084

    Article  PubMed  Google Scholar 

  24. Hauck WW, Miike R (1991) A proposal for examining and reporting stepwise regressions. Stat Med 10:711–715

    Article  CAS  PubMed  Google Scholar 

  25. Hammoud MA, Sawaya R, Shi W, Thall PF, Leeds NE (1996) Prognostic significance of preoperative MRI scans in glioblastoma multiforme. J Neurooncol 27:65–73

    Article  CAS  PubMed  Google Scholar 

  26. Pope WB, Sayre J, Perlina A, Villablanca JP, Mischel PS, Cloughesy TF (2005) MR imaging correlates of survival in patients with high-grade gliomas. Am J Neuroradiol 26:2466–2474

    PubMed  Google Scholar 

  27. Schoenegger K, Oberndorfer S, Wuschitz B et al (2009) Peritumoral edema on MRI at initial diagnosis: an independent prognostic factor for glioblastoma? Eur J Neurol 16:874–878

    Article  CAS  PubMed  Google Scholar 

  28. Wu CX, Lin GS, Lin ZX, Zhang JD, Liu SY, Zhou CF (2015) Peritumoral edema shown by MRI predicts poor clinical outcome in glioblastoma. World J Surg Oncol 13:97

    Article  PubMed  PubMed Central  Google Scholar 

  29. Mangiola A, De Bonis P, Maira G et al (2008) Invasive tumor cells and prognosis in a selected population of patients with glioblastoma multiforme. Cancer 113:841–846

    Article  PubMed  Google Scholar 

  30. Ruiz‐Ontañon P, Orgaz JL, Aldaz B et al (2013) Cellular plasticity confers migratory and invasive advantages to a population of glioblastoma‐initiating cells that infiltrate peritumoral tissue. Stem Cells 31:1075–1085

    Article  PubMed  Google Scholar 

  31. Jain R, Poisson LM, Gutman D et al (2014) Outcome prediction in patients with glioblastoma by using imaging, clinical, and genomic biomarkers: focus on the nonenhancing component of the tumor. Radiology 272:484–493

    Article  PubMed  PubMed Central  Google Scholar 

  32. Nguyen TB, Cron GO, Perdrizet K et al (2015) Comparison of the diagnostic accuracy of DSC- and dynamic contrast-enhanced MRI in the preoperative grading of astrocytomas. Am J Neuroradiol 36:2017–2022

    Article  CAS  PubMed  Google Scholar 

  33. Aref M, Chaudhari AR, Bailey KL, Aref S, Wiener EC (2008) Comparison of tumor histology to dynamic contrast enhanced magnetic resonance imaging-based physiological estimates. Magn Reson Imaging 26:1279–1293

    Article  PubMed  Google Scholar 

  34. Harrer JU, Parker GJ, Haroon HA et al (2004) Comparative study of methods for determining vascular permeability and blood volume in human gliomas. J Magn Reson Imaging 20:748–757

    Article  PubMed  Google Scholar 

  35. Haris M, Gupta RK, Singh A et al (2008) Differentiation of infective from neoplastic brain lesions by dynamic contrast-enhanced MRI. Neuroradiology 50:531–540

    Article  PubMed  Google Scholar 

  36. Choi HS, Kim AH, Ahn SS et al (2013) Glioma grading capability: comparisons among parameters from dynamic contrast-enhanced MRI and ADC value on DWI. Korean J Radiol 14:487–492

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tofts PS, Berkowitz B, Schnall MD (1995) Quantitative analysis of dynamic Gd‐DTPA enhancement in breast tumors using a permeability model. Magn Reson Med 33:564–568

    Article  CAS  PubMed  Google Scholar 

  38. Ingrisch M, Dietrich O, Attenberger UI et al (2010) Quantitative pulmonary perfusion magnetic resonance imaging: influence of temporal resolution and signal-to-noise ratio. Invest Radiol 45:7–14

    Article  PubMed  Google Scholar 

  39. Sourbron S (2010) Technical aspects of MR perfusion. Eur J Radiol 76:304–313

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the Korea Health Care Technology R&D Projects, the Korean Ministry for Health, Welfare and Family Affairs (HI13C0015) and by the Bio & Medical Technology Development Program of the National Research Foundation (NRF) funded by the Korean Ministry of Science, ICT & Future Planning (MSIP) (NRF-2015M3A9A7029740) and by Project Code (IBS-R006-D1). We would like to acknowledge statistical consultation from the medical research collaborating centre at the Seoul National University College of Medicine/the Seoul National University Hospital.

The scientific guarantor of this publication is Seung Hong Choi. The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article. No complex statistical methods were necessary for this paper. Institutional review board approval was obtained. Written informed consent was waived by the institutional review board. No study subjects or cohorts have been previously reported. Methodology: retrospective, case-control study, performed at one institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung Hong Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, R., Choi, S.H., Yun, T.J. et al. Prognosis prediction of non-enhancing T2 high signal intensity lesions in glioblastoma patients after standard treatment: application of dynamic contrast-enhanced MR imaging. Eur Radiol 27, 1176–1185 (2017). https://doi.org/10.1007/s00330-016-4464-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-016-4464-6

Keywords

Navigation