Skip to main content

Advertisement

Log in

Patient radiation dose reduction using an X-ray imaging noise reduction technology for cardiac angiography and intervention

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

Coronary angiography and intervention can expose patients to high radiation dose. This retrospective study quantifies the patient dose reduction due to the introduction of a novel X-ray imaging noise reduction technology using advanced real-time image noise reduction algorithms and optimized acquisition chain for fluoroscopy and exposure in interventional cardiology. Patient, procedure and radiation dose data were retrospectively collected in the period August 2012–August 2013 for 883 patients treated with the image noise reduction technology (referred as “new system”). The same data were collected for 1083 patients in the period April 2011–July 2012 with a system using state-of-the-art image processing and reference acquisition chain (referred as “reference system”). Procedures were divided into diagnostic (CAG) and intervention (PCI). Acquisition parameters such as fluoroscopy time, volume of contrast medium, number of exposure images and number of stored fluoroscopy images were collected to classify procedure complexity. The procedural dose reduction was investigated separately for three main cardiologists. The new system provides significant dose reduction compared to the reference system. Median DAP values decreased for all procedures (p < 0.0001) from 172.7 to 59.4 Gy cm2, for CAG from 155.1 to 52.0 Gy cm2 and for PCI from 229.0 to 85.8 Gy cm2 with reduction quantified at 66, 66 and 63 %, respectively. Based on median values, the dose reduction for all procedures was 68, 60 and 67 % for cardiologists 1, 2 and 3, respectively. The X-ray imaging technology combining advanced real-time image noise reduction algorithms and anatomy-specific optimized fluoroscopy and cine acquisition chain provides 66 % patient dose reduction in interventional cardiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Trianni A, Chizzola G, Toh H, Quai E, Cragnolini E, Bernardi G, Proclemer A, Padovani R (2005) Patient skin dosimetry in haemodynamic and electrophysiology interventional cardiology. Radiat Prot Dosimetry 117(1–3):241–246

    CAS  PubMed  Google Scholar 

  2. Kaneko H, Yajima J, Oikawa Y, Tanaka S, Fukamachi D, Suzuki S, Sagara K, Otsuka T, Matsuno S, Funada R, Kano H, Uejima T, Koike A, Nagashima K, Kirigaya H, Sawada H, Aizawa T, Yamashita T (2014) Impact of aging on the clinical outcomes of Japanese patients with coronary artery disease after percutaneous coronary intervention. Heart Vessels 29(2):156–164

    Article  PubMed  PubMed Central  Google Scholar 

  3. Picano E, Santoro G, Vano E (2007) Sustainability in the cardiac cath lab. Int J Cardiovasc Imaging 23(2):143–147

    Article  PubMed  Google Scholar 

  4. Fazel R, Krumholz HM, Wang Y, Ross JS, Chen J, Ting HH, Shah ND, Nasir K, Einstein AJ, Nallamothu BK (2009) Exposure to low-dose ionizing radiation from medical imaging procedures. N Engl J Med 361(9):849–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Strauss KJ, Kaste SC (2006) The ALARA (as low as reasonably achievable) concept in pediatric interventional and fluoroscopic imaging: striving to keep radiation doses as low as possible during fluoroscopy of pediatric patients—a white paper executive summary. Pediatr Radiol 36(2):110–112

    Article  PubMed  PubMed Central  Google Scholar 

  6. Dekker LRC, van der Voort PH, Simmers TA, Verbeek XAAM, Bullens RWM, van’t Veer M, Brands PJM, Meijer A (2013) New image processing and noise reduction technology allows reduction of radiation exposure in complex electrophysiologic interventions while maintaining optimal image quality: A randomized clinical trial. Heart Rhythm 10(11):1678–1682

    Article  PubMed  Google Scholar 

  7. Soderman M, Mauti M, Boon S, Omar A, Marteinsdóttir M, Andersson T, Holmin S, Hoornaert B (2013) Radiation dose in neuroangiography using image noise reduction technology: a population study based on 614 patients. Neuroradiology 55:1365–1372

    Article  PubMed  PubMed Central  Google Scholar 

  8. Söderman M, Holmin S, Andersson T, Palmgren C, Babić D, Hoornaert B (2013) Clinical results with an image noise reduction algorithm for digital subtraction angiography. Radiology 269(2):553–560

    Article  PubMed  Google Scholar 

  9. Racadio J, Strauss K, Abruzzo T, Patel M, Kukreja K, Johnson N, den Hartog M, Hoornaert B, Nachabe R (2014) Significant dose reduction for pediatric digital subtraction angiography without impairing image quality: preclinical study in a piglet model. Am J Roentgenol 203:904–908

    Article  Google Scholar 

  10. Farshid A, Chandrasekhar J, McLean D (2014) Benefits of dual-axis rotational coronary angiography in routine clinical practice. Heart Vessels 29(2):199–205

    Article  PubMed  Google Scholar 

  11. Ogita M, Sakakura K, Nakamura T, Funayama H, Wada H, Naito R, Sugawara Y, Kubo N, Ako J, Momomura S (2012) Association between deteriorated renal function and long-term clinical outcomes after percutaneous coronary intervention. Heart Vessels 27(5):460–467

    Article  PubMed  Google Scholar 

  12. Matejka J, Varvarovsky I, Vojtisek P, Herman A, Rozsival V, Borkova V, Kvasnicka J (2010) Prevention of contrast-induced acute kidney injury by theophylline in elderly patients with chronic kidney disease. Heart Vessels 25(6):536–542

    Article  PubMed  Google Scholar 

  13. Grantham JA, Marso SP, Spertus J, House J, Holmes DR Jr, Rutherford BD (2009) Chronic total occlusion angioplasty in the United States. JACC Cardiovasc Interv 2(6):479–486

    Article  PubMed  Google Scholar 

  14. Tsapaki V, Kottou S, Vano E, Faulkner K, Giannouleas J, Padovani R, Kyrozi E, Koutelou M, Vardalaki E, Neofotistou V (2003) Patient dose values in a dedicated Greek cardiac centre. Br J Radiol 76:726–730

    Article  CAS  PubMed  Google Scholar 

  15. Pantos I, Patatoukas G, Katritsis DG, Efstathopoulos E (2009) Patient radiation doses in interventional cardiology. Curr Cardiol Rev 5(1):1–11

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bar O, Maccia C, Pagès P, Blanchard D (2008) A multicentre survey of patient exposure to ionising radiation during interventional cardiology procedures in France. Euro Interv 3(5):593–599

    Google Scholar 

  17. Cui Y, Zhang H, Zheng J, Yang X, Liang C (2013) An investigation of patient doses during coronary interventional procedures in China. Radiat Prot Dosim 156(3):296–302

    Article  Google Scholar 

  18. Bogaert E, Bacher K, Lemmens K, Carlier M, Desmet W, De Wagter X, Djian D, Hanet C, Heyndrickx G, Legrand V, Taeymans Y, Thierens H (2009) A large-scale multicentre study of patient skin doses in interventional cardiology: dose-area product action levels and dose reference levels. Br J Radiol 82(976):303–312

    Article  CAS  PubMed  Google Scholar 

  19. Sadick V, Reed W, Collins L, Sadick N, Heard R, Robinson J (2010) Impact of biplane versus single-plane imaging on radiation dose, contrast load and procedural time in coronary angioplasty. Br J Radiol 83(989):379–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tsapaki V, Ahmed NA, AlSuwaidi JS, Beganovic A, Benider A, BenOmrane L, Borisova R, Economides S, El-Nachef L, Faj D, Hovhannesyan A, Kharita MH, Khelassi-Toutaoui N, Manatrakul N, Mirsaidov I, Shaaban M, Ursulean I, Wambani JS, Zaman A, Ziliukas J, Zontar D, Rehani MM (2009) Radiation exposure to patients during interventional procedures in 20 countries: initial IAEA project results. AJR Am J Roentgenol 193(2):559–569

    Article  PubMed  Google Scholar 

  21. Rehani MM, Frush DP, Berris T, Einstein AJ (2012) Patient radiation exposure tracking: worldwide programs and needs–results from the first IAEA survey. Eur J Radiol 81(10):968–976

    Article  Google Scholar 

  22. Thomsen HS, Morcos SK (2003) Contrast media and the kidney: european Society of Urogenital Radiology (ESUR) Guidelines. Br J Radiol 76:513–518

    Article  CAS  PubMed  Google Scholar 

  23. Davidson C, Stacul F, McCullough PA, Tumlin J, Adam A, Lameire N, Becker CR, CIN Consensus Working Panel (2006) Contrast medium use. Am J Cardiol 98(6):42–58

    Article  Google Scholar 

Download references

Conflict of interest

M. Mauti, Y. Waizumi and S. Yamada are employees of Philips Healthcare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeru Nakamura.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakamura, S., Kobayashi, T., Funatsu, A. et al. Patient radiation dose reduction using an X-ray imaging noise reduction technology for cardiac angiography and intervention. Heart Vessels 31, 655–663 (2016). https://doi.org/10.1007/s00380-015-0667-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-015-0667-z

Keywords

Navigation