Skip to main content

Advertisement

Log in

The role of magnetoencephalography in pediatric epilepsy surgery

  • Special Annual Issue
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Introduction

Magnetoencephalography (MEG) is a new diagnostic imaging and brain mapping device that has been recently used in the context of pediatric epilepsy, epilepsy surgery, and neuronavigation.

Principles of magnetoencephalography

MEG allows for the placement of magnetic spike sources on a conventional magnetic resonance imaging scan, the so-called magnetic source imaging, so that the localization of epileptiform activity in a child can be determined. Considerable effort is placed on analyzing the configuration and number of spike waves by MEG that relate to a primary epileptiform discharge. Such MEG spike clusters are corroborated now by intraoperative invasive subdural grid monitoring that show good correlation in the majority of cases. Another important role of MEG relates to the mapping of critical regions of brain function using known paradigms for speech, motor, sensory, visual, and auditory brain cortex.

Future applications

When linked to standard neuronavigation devices, MEG brain mapping can be extremely helpful to the neurosurgeon approaching nonlesional epilepsy cases or lesional cases where the safest and most direct route to the surgical disease can be selected. As paradigms for brain mapping improve and as MEG software upgrades become more sensitive to analyzing all types of spike sources, MEG will play an increasingly important role in pediatric neurosurgery, especially for the child with intractable epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Baule GM, McFee R (1963) Detection of the magnetic field of the heart. J Appl Phys 36:2066–2073

    Article  Google Scholar 

  2. Cohen D, Edelsack E, Zimmerman JE (1970) Magnetocardiograms taken inside a shielded room with a superconducting point-contact magnetometer. Appl Phys Lett 16:278–280

    Article  Google Scholar 

  3. Cohen D (1972) Magnetoencephalography: detection of the brain’s electrical activity with a superconducting magnetometer. Science 175:664–666

    Article  PubMed  CAS  Google Scholar 

  4. Papanicolaou AC (1995) An introduction to magnetoencephalography with some applications. Brain Cogn 27(3):331–352

    Article  PubMed  CAS  Google Scholar 

  5. Roberts TP, Poeppel D, Rowley HA (1998) Magnetoencephalography and magnetic source imaging. Neuropsychiatry Neuropsychol Behav Neurol 11(2):49–64

    PubMed  CAS  Google Scholar 

  6. Holowka SA, Otsubo H, Iida K, Pang E, Sharma R, Hunjan A, Xiang J, Snead OC, III, Chuang NA, Chuang SH, Rutka JT (2004) Three-dimensionally reconstructed magnetic source imaging and neuronavigation in pediatric epilepsy: technical note. Neurosurgery 55(5):1226

    Article  PubMed  Google Scholar 

  7. Rosenow F, Luders H (2001) Presurgical evaluation of epilepsy. Brain 124(Pt 9):1683–1700

    Article  PubMed  CAS  Google Scholar 

  8. Lawson JA, O’Brien TJ, Bleasel AF, Haindl W, Vogrin S, Cook MJ, Bye AM (2000) Evaluation of SPECT in the assessment and treatment of intractable childhood epilepsy. Neurology 55(9):1391–1393

    PubMed  CAS  Google Scholar 

  9. O’Brien TJ, So EL, Mullan BP, Cascino GD, Hauser MF, Brinkmann BH, Sharbrough FW, Meyer FB (2000) Subtraction peri-ictal SPECT is predictive of extratemporal epilepsy surgery outcome. Neurology 55(11):1668–1677

    PubMed  CAS  Google Scholar 

  10. O’Brien TJ, So EL, Mullan BP, Hauser MF, Brinkmann BH, Bohnen NI, Hanson D, Cascino GD, Jack CR Jr, Sharbrough FW (1998) Subtraction ictal SPECT co-registered to MRI improves clinical usefulness of SPECT in localizing the surgical seizure focus. Neurology 50(2):445–454

    PubMed  CAS  Google Scholar 

  11. So EL (2002) Role of neuroimaging in the management of seizure disorders. Mayo Clin Proc 77(11):1251–1264

    Article  PubMed  Google Scholar 

  12. Kuzniecky R, Hugg JW, Hetherington H, Butterworth E, Bilir E, Faught E, Gilliam F (1998) Relative utility of 1H spectroscopic imaging and hippocampal volumetry in the lateralization of mesial temporal lobe epilepsy. Neurology 51(1):66–71

    PubMed  CAS  Google Scholar 

  13. Mueller SG, Laxer KD, Suhy J, Lopez RC, Flenniken DL, Weiner MW (2003) Spectroscopic metabolic abnormalities in mTLE with and without MRI evidence for mesial temporal sclerosis using hippocampal short-TE MRSI. Epilepsia 44(7):977–980

    Article  PubMed  Google Scholar 

  14. Nakasato N, Levesque MF, Barth DS, Baumgartner C, Rogers RL, Sutherling WW (1994) Comparisons of MEG, EEG, and ECoG source localization in neocortical partial epilepsy in humans. Electroencephalogr Clin Neurophysiol 91(3):171–178

    Article  PubMed  CAS  Google Scholar 

  15. Scherg M, Ebersole JS (1993) Models of brain sources. Brain Topogr 5(4):419–423

    Article  PubMed  CAS  Google Scholar 

  16. Binder J (1997) Functional magnetic resonance imaging. Language mapping. Neurosurg Clin N Am 8(3):383–392

    PubMed  CAS  Google Scholar 

  17. Roberts TP, Disbrow EA, Roberts HC, Rowley HA (2000) Quantification and reproducibility of tracking cortical extent of activation by use of functional MR imaging and magnetoencephalography. AJNR Am J Neuroradiol 21(8):1377–1387

    PubMed  CAS  Google Scholar 

  18. Roberts TP, Ferrari P, Perry D, Rowley HA, Berger MS (2000) Presurgical mapping with magnetic source imaging: comparisons with intraoperative findings. Brain Tumor Pathol 17(2):57–64

    Article  PubMed  CAS  Google Scholar 

  19. Otsubo H, Ochi A, Elliott I, Chuang SH, Rutka JT, Jay V, Aung M, Sobel DF, Snead OC (2001) MEG predicts epileptic zone in lesional extrahippocampal epilepsy: 12 pediatric surgery cases. Epilepsia 42(12):1523–1530

    Article  PubMed  CAS  Google Scholar 

  20. Papanicolaou AC, Pataraia E, Billingsley-Marshall R, Castillo EM, Wheless JW, Swank P, Breier JI, Sarkari S, Simos PG (2005) Toward the substitution of invasive electroencephalography in epilepsy surgery. J Clin Neurophysiol 22(4):231–237

    Article  PubMed  Google Scholar 

  21. Assaf BA, Karkar KM, Laxer KD, Garcia PA, Austin EJ, Barbaro NM, Aminoff MJ (2003) Ictal magnetoencephalography in temporal and extratemporal lobe epilepsy. Epilepsia 44(10):1320–1327

    Article  PubMed  Google Scholar 

  22. Eliashiv DS, Elsas SM, Squires K, Fried I, Engel J Jr (2002) Ictal magnetic source imaging as a localizing tool in partial epilepsy. Neurology 59(10):1600–1610

    PubMed  CAS  Google Scholar 

  23. Oishi M, Otsubo H, Kameyama S, Wachi M, Tanaka K, Masuda H, Tanaka R (2003) Ictal magnetoencephalographic discharges from elementary visual hallucinations of status epilepticus. J Neurol Neurosurg Psychiatry 74(4):525–527

    Article  PubMed  CAS  Google Scholar 

  24. Yoshinaga H, Ohtsuka Y, Watanabe Y, Inutsuka M, Kitamura Y, Kinugasa K, Oka E (2004) Ictal MEG in two children with partial seizures. Brain Develop 26(6):403–408

    Article  Google Scholar 

  25. Tang L, Mantle M, Ferrari P, Schiffbauer H, Rowley HA, Barbaro NM, Berger MS, Roberts TP (2003) Consistency of interictal and ictal onset localization using magnetoencephalography in patients with partial epilepsy. J Neurosurg 98(4):837–845

    Article  PubMed  Google Scholar 

  26. Minassian BA, Otsubo H, Weiss S, Elliott I, Rutka JT, Snead OC III (1999) Magnetoencephalographic localization in pediatric epilepsy surgery: comparison with invasive intracranial electroencephalography. Ann Neurol 46(4):627–633

    Article  PubMed  CAS  Google Scholar 

  27. Iida K, Otsubo H, Matsumoto Y, Ochi A, Oishi M, Holowka S, Pang E, Elliott I, Weiss SK, Chuang SH, Snead OC III, Rutka JT (2005) Characterizing magnetic spike sources by using magnetoencephalography-guided neuronavigation in epilepsy surgery in pediatric patients. J Neurosurg 102(2 Suppl):187–196

    PubMed  Google Scholar 

  28. Bast T, Oezkan O, Rona S, Stippich C, Seitz A, Rupp A, Fauser S, Zentner J, Rating D, Scherg M (2004) EEG and MEG source analysis of single and averaged interictal spikes reveals intrinsic epileptogenicity in focal cortical dysplasia. Epilepsia 45(6):621–631

    Article  PubMed  Google Scholar 

  29. Sakuta R, Otsubo H, Nolan MA, Weiss SK, Hawkins C, Rutka JT, Chuang NA, Chuang SH, Snead OC III (2005) Recurrent intractable seizures in children with cortical dysplasia adjacent to dysembryoplastic neuroepithelial tumor. J Child Neurol (4):377–384

    Article  Google Scholar 

  30. Morioka T, Mizushima A, Yamamoto T, Tobimatsu S, Matsumoto S, Hasuo K, Fujii K, Fukui M (1995) Functional mapping of the sensorimotor cortex: combined use of magnetoencephalography, functional MRI, and motor evoked potentials. Neuroradiology 37(7):526–530

    Article  PubMed  CAS  Google Scholar 

  31. Rezai AR, Hund M, Kronberg E, Zonenshayn M, Cappell J, Ribary U, Kall B, Llinas R, Kelly PJ (1996) The interactive use of magnetoencephalography in stereotactic image-guided neurosurgery. Neurosurgery 39(1):92–102

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This study was supported by the Wiley Fund at the Hospital for Sick Children.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James T. Rutka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grondin, R., Chuang, S., Otsubo, H. et al. The role of magnetoencephalography in pediatric epilepsy surgery. Childs Nerv Syst 22, 779–785 (2006). https://doi.org/10.1007/s00381-006-0124-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-006-0124-5

Keywords

Navigation