Skip to main content

Advertisement

Log in

Updated physiology and pathophysiology of CSF circulation—the pulsatile vector theory

  • Review Paper
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Introduction

Hydrocephalus is still a not well-understood diagnostic and a therapeutic dilemma because of the lack of sufficient and comprehensive model of cerebrospinal fluid circulation and pathological alterations.

Conclusions

Based on current studies, reviews, and knowledge of cerebrospinal fluid dynamics, brain water dynamics, intracranial pressure, and cerebral perfusion physiology, a new concept is deducted that can describe normal and pathological changes of cerebrospinal fluid circulation and pathophysiology of idiopathic intracranial hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abbott NJ (2004) Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem Int 45:545–552

    Article  PubMed  CAS  Google Scholar 

  2. Amiry-Moghaddam M, Frydenlund DS, Ottersen OP (2004) Anchoring of aquaporin-4 in brain: molecular mechanisms and implications for the physiology and pathophysiology of water transport. Neuroscience 129:999–1010

    Article  PubMed  CAS  Google Scholar 

  3. Anile C, Bonis PD, Ficola A, Santini P, Mangiola A (2011) An experimental study on artificially induced CSF pulse waveform morphological modifications. Neurol Res 33(10):1072–1082

    PubMed  Google Scholar 

  4. Anile C, De Bonis P, Di Chirico A, Ficola A, Mangiola A, Petrella G (2009) Cerberal blood flow autoregulation during intracranial hypertension: a simple, purely hydraulic mechanism? Childs Nerv Syst 25:325–335

    Article  PubMed  CAS  Google Scholar 

  5. Anile C, Mangiola A, Andreasi F, Branch CA, Portnoy HD (1989) CSF pulse waveform morphology as an indicator of intracranial system impedance: an experimental study. In: Hoff JT, Betz AL (eds) Intracranial pressure VII. Springer, Berlin, pp 193–195

    Chapter  Google Scholar 

  6. Bastin ME, Sinha S, Farrall AJ, Wardlaw JM, Whittle IR (2003) Diffuse brain oedema in idiopathic intracranial hypertension: a quantitative magnetic resonance imaging study. J Neurol Neurosurg Psychiatry 74(12):1693–1696

    Article  PubMed  CAS  Google Scholar 

  7. Bateman GA (2002) Vascular hydraulics associated with idiopathic and secondary intracranial hypertension. AJNR 23:1180–1186

    PubMed  Google Scholar 

  8. Bateman GA (2004) Idiopathic intracranial hypertension: Priapism of the brain? Med Hypotheses 63:549–552

    Article  PubMed  Google Scholar 

  9. Bateman GA (2006) Association between arterial inflow and venous outflow in idiopathic and secondary intracranial hypertension. J Clin Neurosci 13:550–556

    Article  PubMed  Google Scholar 

  10. Bech-Azeddine R, Nielsen OA, Løgager VB, Juhler M (2007) Lumbar elastance and resistance to CSF outflow correlated to patency of the cranial subarachnoid space and clinical outcome of endoscopic third ventriculostomy in obstructive hydrocephalus. Minim Invasive Neurosurg 50(4):189–194

    Article  PubMed  CAS  Google Scholar 

  11. Bicakci K, Bicakci S, Aksungur E (2006) Perfusion and diffusion magnetic imaging in idiopathic intracranial hypertension. Acta Neurol Scand 114(3):193–197

    Article  PubMed  CAS  Google Scholar 

  12. Branch CA, Chopp M, Portnoy HD (1989) Fourier Analysis of intracranial pressures during experimental intracranial hypertension. In: Hoff JT, Betz AL (eds) Intracranial pressure VII. Springer, Berlin, pp 175–180

    Chapter  Google Scholar 

  13. Brown PD, Davies SL, Speake T, Millar ID (2004) Molecular mechanisms of cerebrospinal fluid production. Neuroscience 129:957–970

    Article  PubMed  CAS  Google Scholar 

  14. Cardoso ER, Rowan JO, Galbraith S (1983) Analysis of the cerebrospinal fluid pulse wave in intracranial pressure. J Neurosurg 59:817–821

    Article  PubMed  CAS  Google Scholar 

  15. Cserr HF (1988) Role of secretion and bulk flow of brain interstitial fluid in brain volume regulation. Ann N Y Acad Sci 529:9–20

    Article  PubMed  CAS  Google Scholar 

  16. Czosnyka M, Czosnyka Z, Keong N, Lavinio A, Smielewski P, Momijan S, Schmidt EA, Petrella G, Owler B, Pickard JD (2007) Pulse pressure waveform in hydrocephalus: what it is and what it isn’t. Neurosurg Focus 22(4):E2

    Article  PubMed  Google Scholar 

  17. Dandy WE (1919) Experimental hydrocephalus. Ann Surg 70:129–142

    Article  PubMed  CAS  Google Scholar 

  18. Del Bigio MR, Enno TI (2008) Effect of hydrocephalus on rat brain extracellular compartment. Cerebrospinal Fluid Res 5:12

    Article  PubMed  Google Scholar 

  19. Demura K, Mase M, Miyati T, Osawa T, Hattori M, Kasai H, Hara M, Shibamoto Y, Yamada K (2012) Changes of fractional anisotropy and apparent diffusion coefficient in patients with idiopathic normal pressure hydrocephalus. Acta Neurochir Suppl 113:29–32

    Article  PubMed  Google Scholar 

  20. DiRocco C, Di Trapani G, Pettorossi VE, Caldarelli M (1979) On the pathology of experimental hydrocephalus induced by artificial increase in endoventricular CSF pulse pressure. Childs Brain 5:81–95

    CAS  Google Scholar 

  21. DiRocco C, Pettorossi VE, Caldarelli M, Mancinelli R, Velardi R (1978) Communicating hydrocephalus induced by mechanically increased amplitude of the intraventricular cerebrospinal fluid pressure: experimental studies. Exp Neurol 59:40–52

    Article  CAS  Google Scholar 

  22. Egnor M, Zheng L, Rosiello A, Gutman F, Davis R (2002) A model of pulsations in communicating hydrocephalus. Pediatr Neurosurg 36:281–303

    Article  PubMed  Google Scholar 

  23. Eide PK, Saehle T (2010) Is ventriculomegaly in idiopathic normal pressure hydrocephalus associated with a transmantle gradient in pulsatile intracranial pressure? Acta Neurochir (Wien) 152(6):989–995

    Article  Google Scholar 

  24. Ekizoglu E, Içoz S, Tuzun E, Birisik O, Kocasoy-Orhan E, Akman-Demir G, Baykan B (2012) Aquaporin-4 antibodies are not present in patients with idiopathic intracranial hypertension. Cephalalgia 32(3):198–202

    Article  PubMed  Google Scholar 

  25. Fahraeus R, Lindquist T (1931) The viscosity of the blood in narrow capillary tubes. Am J Physiol 96:562–568

    CAS  Google Scholar 

  26. Fishman RA (1966) Occult hydrocephalus [Letter]. N Engl J Med 27:466–467

    Google Scholar 

  27. Foley EL, Aine C (1981) Diagnosis of hydrocephalus by CSF pulse-wave analysis: a clinical study. Surg Neurol 15:283–293

    Article  Google Scholar 

  28. Fraser C, Plant GT (2011) The syndrome of pseudotumor cerebri and idiopathic intracranial hypertension. Curr Opin Neurol 24(1):12–17

    Article  PubMed  Google Scholar 

  29. Friedman DI (2012) Aquaporin-4 antibodies and idiopathic intracranial hypertension: the jury is in and the channels are out. Cephalalgia 32(3):183–184

    Article  PubMed  Google Scholar 

  30. Gangemi M, Maiuri F, Buonamassa S, Colella G, de Divitiis E (2004) Endoscopic third ventriculostomy in idiopathic normal pressure hydrocephalus. Neurosurgery 55(1):129–134, discussion 134

    Article  PubMed  Google Scholar 

  31. Greitz D (1993) Cerebrospinal fluid circulation and associated intracranial dynamics. A radiologic investigation using MR imaging and radionuclide cisternography. Acta Radiol Suppl 386:1–23

    PubMed  CAS  Google Scholar 

  32. Greitz D (2004) Radiological assessment of hydrocephalus: new theories and implications for therapy. Neurosurg Rev 27(3):145–165

    Article  PubMed  Google Scholar 

  33. Greitz D, Franck A, Nordell B (1993) On the pulsatile nature of intracranial and spinal CSF-circulation demonstrated by MR imaging. Acta Radiol 34(4):321–328

    PubMed  CAS  Google Scholar 

  34. Greitz D, Hanerz J, Rähn T, Bolander H, Ericsson A (1994) MR imaging of cerebrospinal fluid dynamics in health and disease. On the vascular pathogenesis of communicating hydrocephalus and benign intracranial hypertension. Acta Radiol 35:204–211

    PubMed  CAS  Google Scholar 

  35. Greitz D, Wirestam R, Franck A, Nordell B, Thomson C, Stahlberg F (1992) Pulsatile brain movement and associated hydrodynamics studied by magnetic resonance phase imaging. The Monro-Kellie doctrine revisited. Neuroradiology 34:370–380

    Article  PubMed  CAS  Google Scholar 

  36. Gunnarson E, Zelenina M, Aperia A (2004) Regulation of brain aquaporins. Neuroscience 129:947–955

    Article  PubMed  CAS  Google Scholar 

  37. Gupta S, Soellinger M, Grzybowski DM et al (2010). Cerebrospinal fluid dynamics in the human cranial subarachnoid space: an ovelooked mediator of cerebral disease. I. Computational model. J R Soc Interface 7:1195–1204

    Google Scholar 

  38. Hamer J, Alberti E, Hoyer S, Wiedemann K (1977) Influence of systemic and cerebral vascular factors on the cerebrospinal fluid pulse waves. J Neurosurg 46:36–45

    Article  PubMed  CAS  Google Scholar 

  39. Hannerz J, Ericson K (2009) The relationship between idiopathic intracranial hypertension and obesity. Headache 49(2):178–184

    Article  PubMed  Google Scholar 

  40. He X, Raichle ME, Yablonskiy DA (2012) Transmembrane dynamics of water exchange in human brain. Magn Reson Med 67(2):562–571

    Article  PubMed  CAS  Google Scholar 

  41. Higgin JN, Gillard JH, Owler BK, Harkness K, Pickard JD (2004) MR venography in idiopathic intracranial hypertension: unappreciated and misunderstood. J Neurol Neurosurg Psychiatry 72:621–625

    Article  Google Scholar 

  42. Hirai O, Handa H, Ishikawa M (1985) An analysis of the epidural pulse waveform in neurosurgical patients. In: Miller JD, Teasdale GM, Rowan JO, Galbraith SL, Mendelow AD (eds) Intracranial pressure VI. Spinger, Berlin, pp 281–285

    Google Scholar 

  43. Hochwald GA, Lux WE, Sahar A, Ransohoff J (1972) Experimental hydrocephalus: changes in cerebrospinal fluid dynamics as a function of time. Arch Neurol 26:120–129

    Article  PubMed  CAS  Google Scholar 

  44. Hoff J, Barber R (1974) Transcerebral mantle pressure in normal-pressure hydrocephalus. Arch Neurol 31:101–105

    Article  PubMed  CAS  Google Scholar 

  45. Jensen F (1979) Acquired hydrocephalus. III. A pathophysiological study correlated with neuropathological findings and clinical manifestations. Acta Neurochir (Wien) 47(1–2):91–104

    Article  CAS  Google Scholar 

  46. Johanson CE, Duncan JA 3rd, Klinge PM, Brinker T, Stopa EG, Silverberg GD (2008) Multiplicity of cerebrospinal fluid functions: new challenges in health and disease. Cerebrospinal Fluid Res 5:10

    Article  PubMed  Google Scholar 

  47. Kasuga Y, Nagal H, Hasegawa Y, Nitta M (1987) Transmission characteristics of pulse waves in the intracranial cavity of dogs. J Neurosurg 66:907–914

    Article  PubMed  CAS  Google Scholar 

  48. Kerty E, Heuser K, Indahl UG, Berg PR, Nakken S, Lien S, Omholt SW, Ottersen OP, Nagelhus EA (2013) Is the brain water channel aquaporin-4 a pathogenetic factor in idiopathic intracranial hypertension? Results from a combined clinical and genetic study in a Norwegian cohort. Acta Ophthalmol 91(1):88–91

    Article  PubMed  CAS  Google Scholar 

  49. King JO, Mitchell PJ, Thompson KR, Tress BM (2002) Manometry combined with cervical puncture in idiopathic intracranial hypertension. Neurology 58:26–30

    Article  PubMed  CAS  Google Scholar 

  50. Klassen PA, Cardoso ER, Shwedyk E (1989) Mathematical modelling of the contribution of arterial volumetric pulsation to the intracranial pulse wave. In: Hoff JT, Betz AL (eds) Intracranial pressure VII. Springer, Berlin, pp 169–171

    Chapter  Google Scholar 

  51. Kondziella D, Eyjolfsson EM, Saether O, Sonnewald U, Risa O (2009) Gray matter metabolism in acute and chronic hydrocephalus. Neuroscience 159(2):570–577

    Article  PubMed  CAS  Google Scholar 

  52. Kondziella D, Lüdemann W, Brinker T, Sletvold O, Sonnewald U (2002) Alterations in brain metabolism, CNS morphology and CSF dynamics in adult rats with kaolin-induced hydrocephalus. Brain Res 927(1):35–41

    Article  PubMed  CAS  Google Scholar 

  53. Kondziella D, Qu H, Lüdemann W, Brinker T, Sletvold O, Sonnewald U (2003) Astrocyte metabolism is disturbed in the early development of experimental hydrocephalus. J Neurochem 85(1):274–281

    Article  PubMed  CAS  Google Scholar 

  54. Kristensen B, Malm J, Fagerland M, Hietala SO, Johansson B, Ekstedt J, Karlsson T (1996) Regional cerebral blood flow, white matter abnormalities, and cerebrospinal fluid hydrodynamics in patients with idiopathic adult hydrocephalus syndrome. J Neurol Neurosurg Psychiatry 60(3):282–288

    Article  PubMed  CAS  Google Scholar 

  55. Lehmann GL, Gradilone SA, Marinelli RA (2004) Aquaporin water channels in central nervous system. Curr Neurovasc Res 1:293–303

    Article  PubMed  CAS  Google Scholar 

  56. Lemcke J, Meier U, Müller C, Fritsch M, Kiefer M, Eymann R, Kehler U, Langer N, Schuhmann MU, Speil A, Weber F, Remenez V, Rohde V, Ludwig HC, Stengel D (2012) On the method of a randomised comparison of programmable valves with and without gravitational units: the SVASONA study. Acta Neurochir Suppl 114:243–246

    Article  PubMed  Google Scholar 

  57. Lemke J, Meier U (2010) Improved outcome in shunted iNPH with a combination of a Codman Hakim programmable valve and an Aeskulap–Miethke ShuntAssistant. Cent Eur Neurosurg 71(3):113–116

    Article  Google Scholar 

  58. Levin VA, Gilboe DD (1970) Blood volume, hematocrit and pressure relationship in the isolated perfused dog brain. Stroke 1:270–277

    Article  PubMed  CAS  Google Scholar 

  59. Levine DN (2008) Intracranial pressure and ventricular expansion in hydrocephalus: have we been asking the wrong question? J Neurol Sci 269(1-2):1–11, Review

    Article  PubMed  Google Scholar 

  60. Luaces M, Cachofeiro V, García-Muñoz-Najar A, Medina M, González N, Cancer E, Rodríguez-Robles A, Cánovas G, Antequera-Pérez A (2012) Anatomical and functional alterations of the heart in morbid obesity. Changes after bariatric surgery. Rev Esp Cardiol 65(1):14–21

    Article  PubMed  Google Scholar 

  61. Luedemann W, Kondziella D, Tienken K, Klinge P, Brinker T, Berens von Rautenfeld D (2002) Spinal cerebrospinal fluid pathways and their significance for the compensation of kaolin-hydrocephalus. Acta Neurochir Suppl 81:271–273

    PubMed  CAS  Google Scholar 

  62. Luetner PH, Huston J, Friedman JA, Dixon GR, Peterson RC, Jack CR, McClelland RL, Ebersold MJ (2002) Measurement of cerebrospinal fluid flow at the cerebral aqueduct by the use of phase-contrast magnetic resonance imaging: technique validation and utility in diagnosing idiopathic normal pressure hydrocephalus. Neurosurgery 50(3):534–543, discussion 543-4

    Google Scholar 

  63. Marmarou A, Shulman K, Morgese J (1975) Compartmental analysis of compliance and outflow resistance of the cerebrospinal fluid system. J Neurosurg 43:523–534

    Article  PubMed  CAS  Google Scholar 

  64. McAllister JP 2nd, Miller JM (2006) Aquaporin 4 and Hydrocephalus. J Neurosurg 105(6 Suppl):457–458, discussion 458

    PubMed  Google Scholar 

  65. Meier U, Zeilinger FS, Schönherr B (2000) Endoscopic ventriculostomy versus shunt operation in normal pressure hydrocephalus: diagnostics and indication. Acta Neurochir Suppl 76:563–566

    PubMed  CAS  Google Scholar 

  66. Milhorat T (1967) Choroid plexus and cerebrospinal fluid production. Science 166:1514–1516

    Article  Google Scholar 

  67. Milhorat TH (1987). Physiology of the cerebrospinal fluid. In: Cerebrospinal fluid and the Brain Edemas. Neuroscience Society of New York, New York, pp. 39–73

  68. Mitchell GF, van Buchem MA, Sigurdsson S, Gotal JD, Jonsdottir MK, Kjartansson Ó, Garcia M, Aspelund T, Harris TB, Gudnason V, Launer LJ (2011) Arterial stiffness, pressure and flow pulsatility and brain structure and function: the age, gene/environment susceptibility—Reykjavik study. Brain 134(Pt 11):3398–3407

    Article  PubMed  Google Scholar 

  69. Nishiyama K, Mori H, Tanaka R (2003) Changes in cerebrospinal fluid hydrodynamics following endoscopic third ventriculustomy for shunt-dependent noncommunicating hydrocephalus. J Neurosurg 98(5):1027–1031

    Article  PubMed  Google Scholar 

  70. Paidakakos N, Borgarello S, Naddeo M (2012) Indications for endoscopic third ventriculostomy in normal pressure hydrocephalus. Acta Neurochir Suppl 113:123–127

    Article  PubMed  Google Scholar 

  71. Piper IR, Chan KH, Whittle IR, Miller JD (1993) An experimental study of cerebrovascular resistance, pressure transmission, and craniospinal compliance. Neurosurgery 32(5):805–815, discussion 815-6

    Article  PubMed  CAS  Google Scholar 

  72. Portnoy HD, Branch C, Castro ME (1994) The relationship of intracranial venous pressure and hydrocephalus. Childs Nerv Syst 10(1):29–35

    Article  PubMed  CAS  Google Scholar 

  73. Raimondi AJ (1994) A unifying theory for the definition and classification of hydrocephalus. Childs Nerv Syst 10(1):2–12

    Article  PubMed  CAS  Google Scholar 

  74. Rangel-Castilla L, Barber S, Zhang YJ (2011) The role of endoscopic third ventriculostomy in the treatment of communicating hydrocephalus. World Neurosurg 77(3–4):555–560

    PubMed  Google Scholar 

  75. Rekate HL (1994) Circuit diagram of the circulation of cerebrospinal fluid. Pediatr Neurosurg 21:248–252

    Article  PubMed  CAS  Google Scholar 

  76. Rekate HL, McCormick J, Ko WH. Failure to demonstrate the brain transmissibility factor. In: Concepts in Pediatric Neurosurgery, vol. 10. Karger, Basel, pp. 235–244

  77. Rekate HL, Nadkarni TD, Wallace D (2008) The importance of the cortical subarachnoid space in understanding hydrocephalus. J Neurosurg Pediatr 2(1):1–11

    Article  PubMed  Google Scholar 

  78. Rekate HL, Olivero W, McComick J, Chizeck H, Ko WH (1989) Resistance elements within the cerebrospinal fluid circulation. In: Gjerris F, Borgesen S, Soelberg–Sorensen P (eds) Outflow of cerebrospinal fluid. Munksgaard, Copenhagen, pp 45–52

    Google Scholar 

  79. Rekate HL, Williams FC Jr, Brodkey JA, McCormick JM, Chizeck HJ, Ko W (1988) Resistance of the Foramen of Monro. Pediatr Neurosci 14:85–89

    Article  PubMed  CAS  Google Scholar 

  80. Seki J, Satomura Y, Ooi Y (2004) Velocity pulse advances pressure pulse by close to 45 degrees in the rat pial arterioles. Biorheology 41(1):45–52

    PubMed  CAS  Google Scholar 

  81. Seki J, Satomura Y, Ooi Y, Yanagida T, Seiyama A (2006) Velocity profiles in rat cerebral microvessels measured by optical coherence tomography. Clin Hemorheol Microcirc 34:233–239

    PubMed  Google Scholar 

  82. Shapiro K, Kohn IJ, Takei F, Zee C (1987) Progressive ventricular enlargement in cats in the absence of transmantle pressure gradients. J Neurosurg 67:88–92

    Article  PubMed  CAS  Google Scholar 

  83. Sharma AK, Gaikwad S, Gupta V, Garg A, Mishra NK (2008) Measurement of peak CSF flow velocity at cerebral aqueduct, before and after lumbar CSF drainage, by use of phase-contrast MRI: utility in the management of idiopathic normal pressure hydrocephalus. Clin Neurol Neurosurg 110(4):363–368

    Article  PubMed  Google Scholar 

  84. Sherman JL, Citrin CM (1986) Magnetic resonance demonstration of normal CSF flow. AJNR 7:3–6

    PubMed  CAS  Google Scholar 

  85. Skipor J, Thiery JC (2008) The choriod plexus–cerebrospinal fluid system: Underevaluated pathway of neuroendocrine signaling into the brain. Acta Neurobiol Exp 68:414–428

    Google Scholar 

  86. Skjolding AD, Rowland IJ, Søgaard LV, Praetorius J, Penkowa M, Juhler M (2010) Hydrocephalus induces dynamic spatiotemporal regulation of aquaporin-4 expression in the rat brain. Cerebrospinal Fluid Res 5:7–20

    Google Scholar 

  87. Stephenson H, Tisell M, Wikkelsö C (2002) There is no transmantle pressure gradient in communicating or noncommunicating hydrocephalus. Neurosurgery 50:763–773

    Article  Google Scholar 

  88. Urbina EM, Khoury PR, McCoy C, Daniels SR, Kimball TR, Dolan LM (2011) Cardiac and vascular consequences of pre-hypertension in youth. J Clin Hypertens (Greenwich) 13(5):332–342

    Article  Google Scholar 

  89. Wagshul ME, Eide PK, Madsen JR (2011) The pulsating brain: a review of experimental and clinical studies of intracranial pulsatility. Fluid Barriers CNS 8(1):5

    Article  Google Scholar 

  90. Wagshul ME, Kelly EJ, Yu HJ, Garlick B, Zimmerman T, Egnor MR (2009) Resonant and notch behaviour in intracranial pressure dynamics. J Neurosurg Pediatr 3:354–364

    Article  PubMed  Google Scholar 

  91. Yada K, Nakagava Y, Tsuru M (1973) Circulatory disturbance of the venous system during experimentals intracranial hypertension. J Neurosurg 39:723–729

    Article  PubMed  CAS  Google Scholar 

  92. Zee CM, Shapiro K (1989) The origin of CSF pulse waves. In: Hoff JT, Betz AL (eds) Intracranial pressure VII. Springer, Berlin, pp 164–165

    Chapter  Google Scholar 

  93. Zou R, Park EH, Kelly EM, Egnor M, Wagshul ME, Madsen JR (2008) Intracranial pressure waves: characterisation of a pulsation absorber with notch filter properties using system analysis: laboratory investigation. J Neurosurg Pediatr 2:83–94

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The author has no competing interests in relation to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Preuss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Preuss, M., Hoffmann, KT., Reiss-Zimmermann, M. et al. Updated physiology and pathophysiology of CSF circulation—the pulsatile vector theory. Childs Nerv Syst 29, 1811–1825 (2013). https://doi.org/10.1007/s00381-013-2219-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-013-2219-0

Keywords

Navigation