Skip to main content

Advertisement

Log in

Variation of the slope of the tentorium during childhood

  • Original Paper
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Background and purpose

Neural structures in the posterior fossa grow at different rates during development. While there are computationally intensive approaches to analyze growth of the cerebellum and brainstem, there is a paucity of information about summary measures of normal posterior fossa development suitable for real-time clinical use. The present study investigates changes in the trajectory of the tentorium as measured by the occipital and tentorial angles at different stages of development.

Methods

A retrospective study was conducted drawing from a Boston Children’s Hospital database of over 1500 magnetic resonance imaging (MRI) studies. The imaging study population included fetuses older than 20 gestational weeks and children between the ages of 0 and 10 years. Two parameters were measured for all subjects: (1) the tentorial angle (the angle between the tentorium and a line from the internal occipital protuberance to the tuberculum sellae) and (2) the occipital angle (the angle between the tentorium and a line from the internal occipital protuberance to the opisthion). Descriptive statistics were used to analyze the study cohort.

Results

We reviewed 1510 brain MRI studies, and 367 studies met the inclusion criteria (125 fetal and 242 postnatal studies). During fetal development, the inclination of the tentorium showed an ascending course, while it plateaus after birth.

Conclusions

During the second and third trimesters, the tentorial and occipital angles steadily increase reflecting the dynamic growth of the posterior fossa structures. Postnatally, the tentorial angle decreases and the tentorium slopes downward and plateaus, possibly due to stabilization of posterior fossa development and ongoing growth of the cerebrum. Together, these findings suggest that the tentorial angle can serve as an imaging biomarker of posterior fossa development during the second half of fetal life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Garel C (2004) MRI of the fetal brain: normal development and cerebral pathologies. Springer, New York

    Book  Google Scholar 

  2. Johnson MH (2003) Development of human brain functions. Biol Psychiatry 54:1312–1316

    Article  PubMed  Google Scholar 

  3. Miller SP, McQuillen PS, Hamrick S, Xu D, Glidden DV, Charlton N, Karl T, Azakie A, Ferriero DM, Barkovich AJ, Vigneron DB (2007) Abnormal brain development in newborns with congenital heart disease. N Engl J Med 357:1928–1938

    Article  CAS  PubMed  Google Scholar 

  4. Studholme C (2011) Mapping fetal brain development in utero using magnetic resonance imaging: the Big Bang of brain mapping. Annu Rev Biomed Eng 13:345–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gogtay N (2010) Advances in neuroimaging allow prospective study of human brain development. Schizophr Res 117:147

    Article  Google Scholar 

  6. Mark HJ (2001) Functional brain development in humans. Nat Rev Neurosci 2:475

    Article  Google Scholar 

  7. Gould E, Tanapat P, Hastings N, Shors T (1999) Neurogenesis in adulthood: a possible role in learning. Trends Cogn Sci 3:186–192

    Article  PubMed  Google Scholar 

  8. Harry GJ, Lein PJ (2012) Developmental neurotoxicity of dioxins. In: Schecter A (ed) Dioxins and health: including other persistent organic pollutants and endocrine disruptors, 3rd edn. John Wiley & Sons, Hoboken, pp 193–228

    Chapter  Google Scholar 

  9. Knickmeyer RC, Gouttard S, Kang C, Evans D, Wilber K, Smith JK, Hamer RM, Lin W, Gerig G, Gilmore JH (2008) A structural MRI study of human brain development from birth to 2 years. J Neurosci 28:12176–12182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tiemeier H, Lenroot RK, Greenstein DK, Tran L, Pierson R, Giedd JN (2010) Cerebellum development during childhood and adolescence: a longitudinal morphometric MRI study. NeuroImage 49:63–70

    Article  PubMed  PubMed Central  Google Scholar 

  11. Holland D, Chang L, Ernst TM, Curran M, Buchthal SD, Alicata D, Skranes J, Johansen H, Hernandez A, Yamakawa R, Kuperman JM, Dale AM (2014) Structural growth trajectories and rates of change in the first 3 months of infant brain development. JAMA Neurol 71:1266–1274

    Article  PubMed  Google Scholar 

  12. Hüppi PS, Warfield S, Kikinis R, Barnes PD, Zientara GP, Jolesz FA, Tsuji MK, Volpe JJ (1998) Quantitative magnetic resonance imaging of brain development in premature and mature newborns. Ann Neurol 43:224–235

    Article  PubMed  Google Scholar 

  13. Bolduc ME, Du Plessis A, Evans A, Guizard N, Zhang X, Robertson R, Limperopoulos C (2011) Cerebellar malformations alter regional cerebral development. Dev Med Child Neurol 53:1128–1134

    Article  PubMed  PubMed Central  Google Scholar 

  14. Glenn O, Cuneo AA, Barkovich A, Hashemi Z, Bartha AI, Xu D (2012) Malformations of cortical development: diagnostic accuracy of fetal MR imaging. Radiology 263:843–855

    Article  PubMed  PubMed Central  Google Scholar 

  15. Dancey CP, Reidy J (2011) Statistics without maths for psychology. Pearson Education Limited, UK, pp 620

  16. Foley P (2015) Neuroanatomical terminology: a lexicon of classical origins and historical foundations by Larry W. Swanson: Oxford: Oxford University Press, 2014. xiii, 1054 pp., 17 illustrations. $US125.00/£81.00 (hardback). ISBN: 978-0-19-534062-4. Basic and Clinical Perspectives, pp 106–108

  17. Schleip R, Findley TW, Chaitow L, Huijing P (2012) Fascia: the tensional network of the human body: the science and clinical applications in manual and movement therapy . Elsevier, Churchill Livingstone, pp 566

  18. Bull JW (1969) Tentorium cerebelli. Proc R Soc Med 62:1301

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Rhoton AL (2000) Tentorial incisura. Neurosurgery 47:S131

    Article  PubMed  Google Scholar 

  20. Klintworth GK (1968) The comparative anatomy and phylogeny of the tentorium cerebelli. Anat Rec 160:635–641

    Article  CAS  PubMed  Google Scholar 

  21. Jeffery N (2002) A high-resolution MRI study of linear growth of the human fetal skull base. Neuroradiology 44:358–366

    Article  CAS  PubMed  Google Scholar 

  22. Liu F, Zhang Z, Lin X, Teng G, Meng H, Yu T, Fang F, Zang F, Li Z, Liu S (2011) Development of the human fetal cerebellum in the second trimester: a post mortem magnetic resonance imaging evaluation. J Anat 219:582–588

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kennedy DN, Makris N, Herbert MR, Takahashi T, Caviness VS (2002) Basic principles of MRI and morphometry studies of human brain development. Dev Sci 5:268–278

    Article  Google Scholar 

  24. Martin RP, Dombrowski SC (2008) Prenatal central nervous system development. In: Prenatal exposures: psychological and educational consequences for children. Springer Science and Business Media, LLC, Boston, pp 15-26

  25. Lacoius-Petruccelli A (1987) Perinatal asphyxia. Plenum Medical Book Co., New York

    Book  Google Scholar 

  26. O’Rahilly R (1987) Developmental stages in human embryos: including a revision of Streeter’s “Horizons” and a survey of the Carnegie Collection. Carnegie Institution of Washington, Washington D.C

    Google Scholar 

  27. O’Rahilly R (2006) The embryonic human brain: an atlas of developmental stages. Wiley-Liss, Hoboken

    Book  Google Scholar 

  28. Limperopoulos C, Soul J, Gauvreau K, Huppi PS, Warfield S, Bassan H, Robertson R, Volpe J, Du Plessis A (2005) Late gestation cerebellar growth is rapid and impeded by premature birth. Pediatrics 115:688–695

    Article  PubMed  Google Scholar 

  29. Hatab MR, Kamourieh SW, Twickler DM (2008) MR volume of the fetal cerebellum in relation to growth. J Magn Reson Imaging 27:840–845

    Article  PubMed  Google Scholar 

  30. Guibaud L (2004) Practical approach to prenatal posterior fossa abnormalities using MRI. Pediatr Radiol 34:700–711

    Article  PubMed  Google Scholar 

  31. Scott JA, Hamzelou KS, Rajagopalan V, Habas PA, Kim K, Barkovich AJ, Glenn OA, Studholme C (2012) 3D morphometric analysis of human fetal cerebellar development. Cerebellum 11:761–770

    Article  PubMed  PubMed Central  Google Scholar 

  32. Clouchoux C, Guizard N, Evans AC, du Plessis AJ, Limperopoulos C (2012) Normative fetal brain growth by quantitative in vivo magnetic resonance imaging. Am J Obstet Gynecol 206(173):e171–e178

    Google Scholar 

  33. Adamsbaum C, Moutard M, André C, Merzoug V, Ferey S, Quéré M, Lewin F, Fallet-Bianco C (2005) MRI of the fetal posterior fossa. Pediatr Radiol 35:124–140

    Article  PubMed  Google Scholar 

  34. Rakic P, Sidman RL (1970) Histogenesis of cortical layers in human cerebellum, particularly the lamina dissecans. J Comp Neurol 139:473–500

    Article  CAS  PubMed  Google Scholar 

  35. Jeffery N, Spoor F (2002) Brain size and the human cranial base: a prenatal perspective. Am J Phys Anthropol 118:324–340

    Article  PubMed  Google Scholar 

  36. Noback CR, Moss ML (1956) Differential growth of the human brain. J Comp Neurol 105:539–551

    Article  PubMed  Google Scholar 

  37. Cho KH, Rodriguez-Vazquez JF, Kim JH, Abe H, Murakami G, Cho BH (2011) Early fetal development of the human cerebellum. Surg Radiol Anat 33:523–530

    Article  PubMed  Google Scholar 

  38. Roelfsema N, Grijseels E, Hop W, Wladimiroff JW (2007) Three-dimensional sonography of prenatal skull base development. Ultrasound Obstet Gynecol 29:372–377

    Article  CAS  PubMed  Google Scholar 

  39. Nemzek W, Brodie H, Hecht S, Chong B, Babcook C, Seibert J (2000) MR, CT, and plain film imaging of the developing skull base in fetal specimens. AJNR Am J Neuroradiol 21:1699–1706

    CAS  PubMed  Google Scholar 

  40. Matras H, Watzek G, Perneczky A (1977) Cephalometric observations in premature craniosynostosis. J Maxillofac Surg 5:298–303

    Article  CAS  PubMed  Google Scholar 

  41. Choe MS, Ortiz-Mantilla S, Makris N, Gregas M, Bacic J, Haehn D, Kennedy D, Pienaar R, Caviness V, Benasich AA, Grant P (2013) Regional infant brain development: an MRI-based morphometric analysis in 3 to 13 month olds. Cereb Cortex 23:2100–2117

    Article  PubMed  PubMed Central  Google Scholar 

  42. Caviness VS, Filipek PA, Kennedy DN (1992) Quantitative magnetic resonance imaging and studies of degenerative diseases of the developing human brain. Brain Dev 14 Suppl:S80

    PubMed  Google Scholar 

  43. Lenroot R, Gogtay N, Greenstein D, Wells E, Wallace G, Clasen L, Blumenthal JD, Lerch J, Zijdenbos AP, Evans A, Thompson P, Giedd J (2007) Sexual dimorphism of brain developmental trajectories during childhood and adolescence. NeuroImage 36:1065–1073

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lecours A (1989) Paul Ivan Yakovlev and his teachings on cerebral maturation and asymmetries. J Neurolinguistics 4:273–292

    Article  Google Scholar 

  45. Benes FM, Turtle M, Khan Y, Farol P (1994) Myelination of a key relay zone in the hippocampal formation occurs in the human brain during childhood, adolescence, and adulthood. Arch Gen Psychiatry 51:477

    Article  CAS  PubMed  Google Scholar 

  46. Ball W, Byars A, Schapiro M, Bommer W (2012) Total and regional brain volumes in a population-based normative sample from 4 to 18 years: the NIH MRI study of normal brain development. Cereb Cortex 22:1–12

    Article  Google Scholar 

  47. Meyer-Marcotty P, Bohm H, Linz C, Kochel J, Stellzig-Eisenhauer A, Schweitzer T (2014) Three-dimensional analysis of cranial growth from 6 to 12 months of age. Eur J Orthod 36:489–496

    Article  CAS  PubMed  Google Scholar 

  48. Lieberman DE, Ross CF, Ravosa MJ (2000) The primate cranial base: ontogeny, function, and integration. Am J Phys Anthropol 113:117–169

    Article  Google Scholar 

  49. Lieberman DE, McCarthy RC (1999) The ontogeny of cranial base angulation in humans and chimpanzees and its implications for reconstructing pharyngeal dimensions. J Hum Evol 36:487–517

    Article  CAS  PubMed  Google Scholar 

  50. Madeline LA, Elster AD (1995) Postnatal development of the central skull base: normal variants. Radiology 196:757

    Article  CAS  PubMed  Google Scholar 

  51. Chugani H (1998) A critical period of brain development: studies of cerebral glucose utilization with PET. Prev Med 27:184–188

    Article  CAS  PubMed  Google Scholar 

  52. Giedd J, Blumenthal J, Jeffries N, Castellanos F, Liu H, Zijdenbos A, Paus T, Evans A, Rapoport J (1999) Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci 2:861–863

    Article  CAS  PubMed  Google Scholar 

  53. Murphy DGM, DeCarli C, Daly E, Haxby JV, Allen G, McIntosh AR, Horwitz B, Rapoport SI, Schapiro MB, White BJ, Powell CM (1993) X-chromosome effects on female brain: a magnetic resonance imaging study of Turner’s syndrome. Lancet 342:1197–1200

    Article  CAS  PubMed  Google Scholar 

  54. Patel S, Barkovich AJ (2002) Analysis and classification of cerebellar malformations. AJNR Am J Neuroradiol 23:1074

    PubMed  Google Scholar 

  55. Ber R, Bar-Yosef O, Hoffmann C, Shashar D, Achiron R, Katorza E (2015) Normal fetal posterior fossa in MR imaging: new biometric data and possible clinical significance. AJNR Am J Neuroradiol 36:795–802

    Article  CAS  PubMed  Google Scholar 

  56. Caldarelli M, Novegno F, Massimi L, Romani R, Tamburrini G, Di Rocco C (2007) The role of limited posterior fossa craniectomy in the surgical treatment of Chiari malformation type I: experience with a pediatric series. J Neurosurg 106:187–195

    PubMed  Google Scholar 

  57. Legnani F, Saladino A, Casali C, Vetrano I, Varisco M, Mattei L, Prada F, Perin A, Mangraviti A, Solero C, DiMeco F (2013) Craniotomy vs. craniectomy for posterior fossa tumors: a prospective study to evaluate complications after surgery. Acta Neurochir 155:2281–2286

    Article  PubMed  Google Scholar 

  58. Yasargil MG, Abdulrauf S, Rhoton AL, Mura J, Tedeschi H, de Oliveira E, Bruce J (2001) Infratentorial supracerebellar approach to the colloid cysts of the third ventricle - comments. Neurosurgery 49:1122–1123

    Google Scholar 

  59. Rey-Dios R, Cohen-Gadol A (2013) A surgical technique to expand the operative corridor for supracerebellar infratentorial approaches: technical note. Acta Neurochir 155:1895–1900

    Article  PubMed  Google Scholar 

  60. Lafazanos S, Ture U, Harput MV, Ture H, Dimitriou T, Yasargil MG (2015) Evaluating the importance of the tentorial angle in the paramedian supracerebellar-transtentorial approach for selective amygdalohippocampectomy. World Neurosurg 83(5):836–841

  61. Stein BM (1971) The infratentorial supracerebellar approach to pineal lesions. J Neurosurg 35:197

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Caitlin Rollins, M.D., Department of Neurology, and Simon K. Warfield, Ph.D, Department of Radiology, Boston Children’s Hospital, for their contribution of research subjects and funding sources. This study was supported in part by NIH grant R01 EB013248 to Simon K. Warfield, Ph.D. as well as NIH grant K12 NS079414 and a Scholars Award of the NHLBI Pediatric Heart Network U10HL068270 to Caitlin Rollins, M.D.

Disclosure

The authors have no disclosure with respect to the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan R. Cohen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rehder, R., Yang, E. & Cohen, A.R. Variation of the slope of the tentorium during childhood. Childs Nerv Syst 32, 441–450 (2016). https://doi.org/10.1007/s00381-015-2899-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-015-2899-8

Keywords

Navigation