Skip to main content

Advertisement

Log in

The neuropathological basis of clinical progression in multiple sclerosis

  • Review
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Multiple sclerosis is the major inflammatory condition affecting the central nervous system (CNS) and is characterised by disseminated focal immune-mediated demyelination. Demyelination is accompanied by variable axonal damage and loss and reactive gliosis. It is this pathology that is thought to be responsible for the clinical relapses that often respond well to immunomodulatory therapy. However, the later secondary progressive stage of MS remains largely refractory to treatment and it is widely suggested that accumulating axon loss is responsible for clinical progression. Although initially thought to be a white matter (WM) disease, it is increasingly apparent that extensive pathology is also seen in the grey matter (GM) throughout the CNS. GM pathology is characterised by demyelination in the relative absence of an immune cell infiltrate. Neuronal loss is also seen both in the GM lesions and in unaffected areas of the GM. The slow progressive nature of this later stage combined with the presence of extensive grey matter pathology has led to the suggestion that neurodegeneration might play an increasing role with increasing disease duration. However, there is a paucity of studies that have correlated the pathological features with clinical milestones during secondary progressive MS. Here, we review the contributions that the various types of pathology are likely to make to the increasing neurological deficit in MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Allen IV, McKeown SR (1979) A histological, histochemical and biochemical study of the macroscopically normal white matter in multiple sclerosis. J Neurol Sci 41:81–91

    Article  PubMed  CAS  Google Scholar 

  2. Babbe H, Roers A, Waisman A et al (2000) Clonal expansions of CD8(+) T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J Exp Med 192:393–404

    Article  PubMed  CAS  Google Scholar 

  3. Barnett MH, Prineas JW (2004) Relapsing and remitting multiple sclerosis: pathology of a newly forming lesion. Ann Neurol 55:458–468

    Article  PubMed  Google Scholar 

  4. Bjartmar C, Kidd G, Mörk S et al (2000) Neurological disability correlates with spinal cord axonal loss and reduced N-acetyl aspartate in chronic multiple sclerosis patients. Ann Neurol 48:893–901

    Article  PubMed  CAS  Google Scholar 

  5. Bö L, Vedeler CA, Nyland H, Trapp BD, Mörk SJ (2003) Intracortical multiple sclerosis lesions are not associated with increased lymphocyte infiltration. Multiple Scler 4:323–331

    Article  Google Scholar 

  6. Bö L, Geurts JJ, Ravid R, Barkhof F (2004) Magnetic resonance imaging as a tool to examine the neuropathology of multiple sclerosis. Neuropathol Appl Neurobiol 30:106–117

    Article  PubMed  Google Scholar 

  7. Bö L, Geurts JJ, Mork SJ, van der Valk P (2006) Grey matter pathology in multiple sclerosis. Acta Neurol Scand Suppl 183:48–50

    Article  PubMed  Google Scholar 

  8. Bö L, Geurts J, Van der Valk P, Polman C, Barkhof F (2007) Lack of correlation between cortical demyelination and white matter pathologic changes in multiple sclerosis. Arch Neurol 64:74–80

    Article  Google Scholar 

  9. Bonati U, Fisniku LK, Altmann DR et al (2011) Cervical cord and brain grey matter atrophy independently associate with long term MS disability. J Neurol Neurosurg Psychiatry 82:471–472

    Article  PubMed  CAS  Google Scholar 

  10. Booss J, Esiri MM, Tourtellotte WW, Mason DY (1983) Immunohistological analysis of T lymphocyte subsets in the central nervous system in chronic progressive multiple sclerosis. J Neurol Sci 62:219–232

    Article  PubMed  CAS  Google Scholar 

  11. Bramow S, Frischer JM, Lassmann H et al (2010) Demyelination versus remyelination in progressive multiple sclerosis. Brain 133:2983–2998

    Article  PubMed  Google Scholar 

  12. Breij ECW, Brink BP, Veerhuis R, van den Berg C et al (2008) Homogeneity of active demyelinating lesions in established multiple sclerosis. Ann Neurol 63:16–25

    Article  PubMed  CAS  Google Scholar 

  13. Brex PA, Ciccarelli O, O’Riordan JI et al (2002) A longitudinal study of abnormalities on MRI and disability from multiple sclerosis. N Engl J Med 346:158–164

    Article  PubMed  Google Scholar 

  14. Brück W, Porada P, Poser S et al (1995) Monocyte/macrophage differentiation in early multiple sclerosis lesions. Ann Neurol 38:788–796

    Article  PubMed  Google Scholar 

  15. Calabrese M, de Stefano N, Atzori M et al (2007) Detection of cortical inflammatory lesions by double inversion recovery magnetic resonance imaging in patients with multiple sclerosis. Arch Neurol 64:1416–1422

    Article  PubMed  Google Scholar 

  16. Calabrese M, de Stefano N, Atzori M et al (2008) Extensive cortical inflammation is associated with epilepsy in multiple sclerosis. J Neurol 255:581–586

    Article  PubMed  Google Scholar 

  17. Calabrese M, Rocca MA, Atzori M et al (2010) A 3-year magnetic resonance imaging study of cortical lesions in relapse-onset multiple sclerosis. Ann Neurol 67:376–383

    PubMed  Google Scholar 

  18. Calabrese M, Filippi M, Gallo P (2010) Cortical lesions in multiple sclerosis. Nat Rev Neurol 6:438–444

    Article  PubMed  Google Scholar 

  19. Campbell GR, Ziabreva I, Reeve AK et al (2011) Mitochondrial DNA deletions and neurodegeneration in multiple sclerosis. Ann Neurol 69:481–492

    Article  PubMed  CAS  Google Scholar 

  20. Cifelli A, Arridge M, Jezzard P, Esiri MM, Palace J, Matthews PM (2002) Thalamic neurodegeneration in multiple sclerosis. Ann Neurol 52:650–653

    Article  PubMed  Google Scholar 

  21. Clements RJ, McDonough J, Freeman EJ (2008) Distribution of parvalbumin and calretinin immunoreactive interneurons in motor cortex from multiple sclerosis post-mortem tissue. Exp Brain Res 187:459–465

    Article  PubMed  CAS  Google Scholar 

  22. Compston A, Coles A (2008) Multiple sclerosis. Lancet 372:1502–1517

    Article  PubMed  CAS  Google Scholar 

  23. Confavreux C, Vukusic S (2006) Age at disability milestones in multiple sclerosis. Brain 129:595–605

    Article  PubMed  Google Scholar 

  24. Confavreux C, Vukusic S, Moreau T, Adeleine P (2000) Relapses and progression of disability in multiple sclerosis. N Engl J Med 343:1430–1438

    Article  PubMed  CAS  Google Scholar 

  25. Dal Bianco A, Bradl M, Frischer J, Kutzelnigg A, Jellinger K, Lassmann H (2008) Multiple sclerosis and Alzheimer’s disease. Ann Neurol 63:174–183

    Article  PubMed  Google Scholar 

  26. de Groot CJ, Bergers E, Kamphorst W et al (2001) Post-mortem MRI-guided sampling of multiple sclerosis brain lesions: increased yield of active demyelinating and (p)reactive lesions. Brain 124:1635–1645

    Article  PubMed  Google Scholar 

  27. De Stefano N, Matthews PM, Fu L et al (1998) Axonal damage correlates with disability in patients with relapsing–remitting multiple sclerosis. Results of a longitudinal magnetic resonance spectroscopy study. Brain 121:1469–1477

    Article  PubMed  Google Scholar 

  28. de Stefano N, Matthews PM, Filippi M et al (2003) Evidence of early cortical atrophy in MS: relevance to white matter changes and disability. Neurology 60:1157–1162

    PubMed  Google Scholar 

  29. Deloire MS, Ruet A, Hamel D, Bonnet M, Dousset V, Brochet B (2011) MRI predictors of cognitive outcome in early multiple sclerosis. Neurology 76:1161–1167

    Article  PubMed  CAS  Google Scholar 

  30. Dutta R, McDonough J, Yin X et al (2006) Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. Ann Neurol 59:478–489

    Article  PubMed  CAS  Google Scholar 

  31. Dutta R, Chang A, Doud MK et al (2011) Demyelination causes synaptic alterations in hippocampi from multiple sclerosis patients. Ann Neurol 69:445–454

    Article  PubMed  CAS  Google Scholar 

  32. Evangelou N, Esiri MM, Smith S et al (2000) Quantitative pathological evidence for axonal loss in normal appearing white matter in multiple sclerosis. Ann Neurol 47:391–395

    Article  PubMed  CAS  Google Scholar 

  33. Ferguson B, Matyszak MK, Esiri MM, Perry VH (1997) Axonal damage in acute multiple sclerosis lesions. Brain 120:393–399

    Article  PubMed  Google Scholar 

  34. Filippi M, Paty DW, Kappos L et al (1995) Correlations between changes in disability and T2-weighted brain MRI activity in multiple sclerosis: a follow-up study. Neurology 45:255–260

    PubMed  CAS  Google Scholar 

  35. Fisher E, Lee JC, Nakamura K, Rudick RA (2008) Gray matter atrophy in multiple sclerosis: a longitudinal study. Ann Neurol 64:255–265

    Article  PubMed  Google Scholar 

  36. Fisniku LK, Chard DT, Jackson JS et al (2008) Gray matter atrophy is related to long-term disability in multiple sclerosis. Ann Neurol 64:247–254

    Article  PubMed  Google Scholar 

  37. Friese MA, Fugger L (2009) Pathogenic CD8+ T cells in multiple sclerosis. Ann Neurol 66:132–141

    Article  PubMed  CAS  Google Scholar 

  38. Frischer JM, Bramow S, Dal-Bianco A et al (2009) The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain 132:1175–1189

    Article  PubMed  Google Scholar 

  39. Fu L, Matthews PM, De Stefano N (1998) Imaging axonal damage of normal-appearing white matter in multiple sclerosis. Brain 121:103–113

    Article  PubMed  Google Scholar 

  40. Geurts JJ, Pouwels PJ, Uitdehaag BM et al (2005) Intracortical lesions in multiple sclerosis: improved detection with 3D double inversion-recovery MR imaging. Radiology 236:254–260

    Article  PubMed  Google Scholar 

  41. Geurts JJ, Bo L, Roosendaal SD et al (2007) Extensive hippocampal demyelination in multiple sclerosis. J Neuropathol Exp Neurol 66:819–827

    Article  PubMed  Google Scholar 

  42. Geurts JJ, Barkhof F (2008) Grey matter pathology in multiple sclerosis. Lancet Neurol 7:841–851

    Article  PubMed  Google Scholar 

  43. Gilmore CP, Donaldson I, Bo L, Owens T, Lowe J, Evangelou N (2009) Regional variations in the extent and pattern of grey matter demyelination in multiple sclerosis: a comparison between the cerebral cortex, cerebellar cortex, deep grey matter nuclei and the spinal cord. J Neurol Neurosurg Psychiatry 80:182–187

    Article  PubMed  CAS  Google Scholar 

  44. Giorgio A, de Stefano N (2010) Cognition in multiple sclerosis: relevance of lesions, brain atrophy and proton MR spectroscopy. Neurol Sci 31(Suppl 2):S245–S248

    Article  PubMed  Google Scholar 

  45. Glad SB, Aarseth JH, Nyland H, Riise T, Myhr KM (2010) Benign multiple sclerosis: a need for a consensus. Acta Neurol Scand Suppl 190:44–50

    Article  PubMed  Google Scholar 

  46. Guseo A, Jellinger K (1975) The significance of perivascular infiltrations in multiple sclerosis. J Neurol 211:51–60

    Article  PubMed  CAS  Google Scholar 

  47. Hochmeister S, Grundtner R, Bauer J et al (2006) Dysferlin is a new marker for leaky brain blood vessels in multiple sclerosis. J Neuropathol Exp Neurol 65:855–865

    Article  PubMed  CAS  Google Scholar 

  48. Howell OW, Palser A, Polito A et al (2006) Disruption of neurofascin localisation reveals early changes preceding demyelination and remyelination in multiple sclerosis. Brain 129:3173–3185

    Article  PubMed  CAS  Google Scholar 

  49. Howell OW, Rundle JL, Garg A, Komada M, Brophy PJ, Reynolds R (2010) Activated microglia mediate axoglial disruption that contributes to axonal injury in multiple sclerosis. J Neuropathol Exp Neurol 69:1017–1033

    Article  PubMed  Google Scholar 

  50. Kornek B, Lassmann H (1999) Axonal pathology in multiple sclerosis: a historical note. Brain Pathol 9:651–656

    Article  PubMed  CAS  Google Scholar 

  51. Kremenchutzky M, Rice GP, Baskerville J, Wingerchuk DM, Ebers GC (2006) The natural history of multiple sclerosis: a geographically based study 9: observations on the progressive phase of the disease. Brain 129:584–594

    Article  PubMed  CAS  Google Scholar 

  52. Kuhlmann T, Lingfeld G, Bitsch A, Schuchardt J, Bruck W (2002) Acute axonal damage in multiple sclerosis is most extensive in early disease stages and decreases over time. Brain 125:2202–2212

    Article  PubMed  Google Scholar 

  53. Kutzelnigg A, Lucchinetti CF, Stadelmann C et al (2005) Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 128:2705–2712

    Article  PubMed  Google Scholar 

  54. Lassmann H, Wekerle H (2005) The pathology of multiple sclerosis. McAlpine’s multiple sclerosis, vol 4. Churchill Livingstone, London, pp 557–599

    Google Scholar 

  55. Leray E, Yaouanq J, Le Page E et al (2010) Evidence for a two-stage disability progression in multiple sclerosis. Brain 133:1900–1913

    Article  PubMed  Google Scholar 

  56. Losseff NA, Webb SL, O’Riordan JI et al (1996) Spinal cord atrophy and disability in multiple sclerosis. A new reproducible and sensitive MRI method with potential to monitor disease progression. Brain 119:2009–2019

    Article  PubMed  Google Scholar 

  57. Lovas G, Szilagyi N, Majtenyi K et al (2000) Axonal changes in chronic demyelinated cervical spinal cord plaques. Brain 123:308–317

    Article  PubMed  Google Scholar 

  58. Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47:707–717

    Article  PubMed  CAS  Google Scholar 

  59. Magliozzi R, Howell O, Vora A et al (2007) Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain 130:1089–1104

    Article  PubMed  Google Scholar 

  60. Magliozzi R, Howell OW, Reeves C et al (2010) A Gradient of neuronal loss and meningeal inflammation in multiple sclerosis. Ann Neurol 68:477–493

    Article  PubMed  CAS  Google Scholar 

  61. McAlpine D (1961) The benign form of multiple sclerosis. A study based on 241 cases seen within three years of onset and followed up until the tenth year or more of the disease. Brain 84:186–203

    Article  PubMed  CAS  Google Scholar 

  62. Meinl E, Krumholtz M, Derfuss T, Junker A, Hohlfeld R (2008) Compartmentalization of inflammation in the CNS: a major mechanism driving progressive multiple sclerosis. J Neurol Sci 274:42–44

    Article  PubMed  CAS  Google Scholar 

  63. Miller DH (1995) Magnetic resonance imaging and spectroscopy in multiple sclerosis. Curr Opin Neurol 8:210–215

    Article  PubMed  CAS  Google Scholar 

  64. Molyneux PD, Filippi M, Barkhof F et al (1998) Correlations between monthly enhanced MRI lesion rate and changes in T2 lesion volume in multiple sclerosis. Ann Neurol 43:332–339

    Article  PubMed  CAS  Google Scholar 

  65. Neumann H, Medana I, Bauer J, Lassmann H (2002) Cytotoxic T lymphocytes in autoimmune and degenerative CNS diseases. Trend Neurosci 25:313–319

    Article  PubMed  CAS  Google Scholar 

  66. Nijeholt GJ, Bergers E, Kamphorst W et al (2001) Post-mortem high-resolution MRI of the spinal cord in multiple sclerosis: a correlative study with conventional MRI, histopathology and clinical phenotype. Brain 124:154–166

    Article  PubMed  CAS  Google Scholar 

  67. Patani R, Balaratnam M, Vora A, Reynolds R (2007) Remyelination can be extensive in multiple sclerosis despite a long disease course. Neuropath App Neurobiol 33:277–287

    Article  CAS  Google Scholar 

  68. Patrikios P, Stadelmann C, Kutzelnigg A et al (2006) Remyelination is extensive in a subset of multiple sclerosis patients. Brain 129:3165–3172

    Article  PubMed  Google Scholar 

  69. Peterson JW, Bö L, Mörk S, Chang A, Trapp BD (2001) Transected neuritis, apoptotic neurons and reduced inflammation in cortical multiple sclerosis lesions. Ann Neurol 50:389–400

    Article  PubMed  CAS  Google Scholar 

  70. Pirko I, Lucchinetti CF, Sriram S, Bakshi R (2007) Gray matter involvement in multiple sclerosis. Neurology. 68:634–642

    Article  PubMed  Google Scholar 

  71. Prineas JW, Barnard RO, Revesz T, Kwon EE, Sharer L, Cho ES (1993) Multiple sclerosis. Pathology of recurrent lesions. Brain 116:681–693

    Article  PubMed  Google Scholar 

  72. Rovaris M, Barkhof F, Calabrese M et al (2009) MRI features of benign multiple sclerosis: toward a new definition of this disease phenotype. Neurology 72:1693–1701

    Article  PubMed  CAS  Google Scholar 

  73. Scalfari A, Neuhaus A, Degenhardt A et al (2010) The natural history of multiple sclerosis: a geographically based study 10: relapses and long-term disability. Brain 133:1914–1929

    Article  PubMed  Google Scholar 

  74. Seewann A, Kooi EJ, Roosendaal SD, Barkhof F, van der Valk P, Geurts JJ (2009) Translating pathology in multiple sclerosis: the combination of post-mortem imaging, histopathology and clinical findings. Acta Neurol Scand 119:349–355

    Article  PubMed  CAS  Google Scholar 

  75. Schmierer K, Scaravilli F, Altmann DR, Barker GJ, Miller DH (2004) Magnetization transfer ratio and myelin in post-mortem multiple sclerosis brain. Ann Neurol 56:407–415

    Article  PubMed  Google Scholar 

  76. Schmierer K, Parkes HG, So P-W et al (2010) High field (9.4 Tesla) magnetic resonance imaging of cortical grey matter lesions in multiple sclerosis. Brain 133:858–867

    Article  PubMed  Google Scholar 

  77. Siffrin V, Vogt J, Radbruch H, Nitsch R, Zipp F (2010) Multiple sclerosis—candidate mechanisms underlying CNS atrophy. Trends Neurosci 33:202–210

    Article  PubMed  CAS  Google Scholar 

  78. Smith KJ, Kapoor R, Hall SM, Davies M (2001) Electrically active axons degenerate when exposed to nitric oxide. Ann Neurol 49:470–479

    Article  PubMed  CAS  Google Scholar 

  79. Stadelmann C (2011) Multiple sclerosis as a neurodegenerative disease: pathology, mechanisms and therapeutic implications. Curr Opin Neurol Adv. Access Mar 31

  80. Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mörk S, Bö L (1998) Axonal transection in the lesions of multiple sclerosis. N Engl J Med 338:278–285

    Article  PubMed  CAS  Google Scholar 

  81. Van der Valk P, Amor S (2009) Preactive lesions in multiple sclerosis. Curr Opin Neurol 22:207–213

    PubMed  Google Scholar 

  82. Vellinga MM, Oude Engberink RD, Seewann A et al (2008) Pluriformity of inflammation in multiple sclerosis shown by ultra-small iron oxide particle enhancement. Brain 131:800–807

    Article  PubMed  Google Scholar 

  83. Vercellino M, Plano F, Votta B, Mutani R, Giordana MT, Cavalla P (2005) Grey matter pathology in multiple sclerosis. J Neuropathol Exp Neurol 64:1101–1107

    Article  PubMed  Google Scholar 

  84. Vuia O (1977) The benign form of multiple sclerosis. Anatomo-clinical aspects. Acta Neurol Scand 55:289–298

    Article  PubMed  CAS  Google Scholar 

  85. Wegner C, Esiri MM, Chance SA, Palace J, Matthews PM (2006) Neocortical neuronal, synaptic, and glial loss in multiple sclerosis. Neurology 67:960–967

    Article  PubMed  CAS  Google Scholar 

  86. Wuerfel J, Haertle M, Waiczies H et al (2008) Perivascular spaces—MRI marker of inflammatory activity in the brain? Brain 131:2332–2340

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Work described in this review was funded by the Multiple Sclerosis Society (Grant No. 747/02 to RR, FR and RN) and the Medical Research Council (Grant No. G0700356 to RR and OH).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Reynolds.

Additional information

R. Reynolds and F. Roncaroli contributed equally to the review.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reynolds, R., Roncaroli, F., Nicholas, R. et al. The neuropathological basis of clinical progression in multiple sclerosis. Acta Neuropathol 122, 155–170 (2011). https://doi.org/10.1007/s00401-011-0840-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-011-0840-0

Keywords

Navigation