Skip to main content

Advertisement

Log in

White matter injury in the preterm infant: pathology and mechanisms

  • Review
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

The human preterm brain is particularly susceptible to cerebral white matter injury (WMI) that disrupts the normal progression of developmental myelination. Advances in the care of preterm infants have resulted in a sustained reduction in the severity of WMI that has shifted from more severe focal necrotic lesions to milder diffuse WMI. Nevertheless, WMI remains a global health problem and the most common cause of chronic neurological morbidity from cerebral palsy and diverse neurobehavioral disabilities. Diffuse WMI involves maturation-dependent vulnerability of the oligodendrocyte (OL) lineage with selective degeneration of late oligodendrocyte progenitors (preOLs) triggered by oxidative stress and other insults. The magnitude and distribution of diffuse WMI are related to both the timing of appearance and regional distribution of susceptible preOLs. Diffuse WMI disrupts the normal progression of OL lineage maturation and myelination through aberrant mechanisms of regeneration and repair. PreOL degeneration is accompanied by early robust proliferation of OL progenitors that regenerate and augment the preOL pool available to generate myelinating OLs. However, newly generated preOLs fail to differentiate and initiate myelination along their normal developmental trajectory despite the presence of numerous intact-appearing axons. Disrupted preOL maturation is accompanied by diffuse gliosis and disturbances in the composition of the extracellular matrix and is mediated in part by inhibitory factors derived from reactive astrocytes. Signaling pathways implicated in disrupted myelination include those mediated by Notch, WNT-beta catenin, and hyaluronan. Hence, there exists a potentially broad but still poorly defined developmental window for interventions to promote white matter repair and myelination and potentially reverses the widespread disturbances in cerebral gray matter growth that accompanies WMI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

(Images in A and B, Courtesy of Dr. Marjorie Grafe, Oregon Health & Science University. C, D, Courtesy of Dr. Ken Poskitt, Children’s and Women’s Hospital, University of British Columbia; E–F adapted from Back and Miller [19])

Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. (CDC) CfDCaP (2004) Economic costs associated with mental retardation, cerebral palsy, hearing loss and vision impairment–United States, 2003. MMWR Morb Mortal Wkly Rep 53:57–59

    Google Scholar 

  2. Aarnoudse-Moens CS, Weisglas-Kuperus N, van Goudoever JB, Oosterlaan J (2009) Meta-analysis of neurobehavioral outcomes in very preterm and/or very low birth weight children. Pediatrics 124:717–728. doi:10.1542/peds.2008-2816

    Article  PubMed  Google Scholar 

  3. Aguirre A, Dupree JL, Mangin JM, Gallo V (2007) A functional role for EGFR signaling in myelination and remyelination. Nat Neurosci 10:990–1002. doi:10.1038/nn1938

    Article  CAS  PubMed  Google Scholar 

  4. Alix JJ, Fern R (2009) Glutamate receptor-mediated ischemic injury of premyelinated central axons. Ann Neurol 66:682–693. doi:10.1002/ana.21767

    Article  CAS  PubMed  Google Scholar 

  5. Alix JJ, Zammit C, Riddle A, Meshul CK, Back SA, Valentino M, Fern R (2012) Central axons preparing to myelinate are highly sensitivity to ischemic injury. Ann Neurol 72:936–951. doi:10.1002/ana.23690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Altman DI, Powers WJ, Perlman JM, Herscovitch P, Volpe SL, Volpe JJ (1988) Cerebral blood flow requirement for brain viability in newborn infants is lower than in adults. Ann Neurol 24:218–226

    Article  CAS  PubMed  Google Scholar 

  7. Anderson PJ, De Luca CR, Hutchinson E, Spencer-Smith MM, Roberts G, Doyle LW (2011) Attention problems in a representative sample of extremely preterm/extremely low birth weight children. Dev Neuropsychol 36:57–73. doi:10.1080/87565641.2011.540538

    Article  PubMed  Google Scholar 

  8. Anderson PJ, Doyle LW (2008) Cognitive and educational deficits in children born extremely preterm. Semin Perinatol 32:51–58. doi:10.1053/j.semperi.2007.12.009

    Article  PubMed  Google Scholar 

  9. Asher R, Perides G, Vanderhaeghen J, Bignami A (1991) Extracellular matrix of central nervous system white matter: demonstration of an hyaluronan-protein complex. J Neurosci Res 28:410–421

    Article  CAS  PubMed  Google Scholar 

  10. Back S, Riddle A, Hohimer A (2012) The instrumented fetal sheep as a model of cerebral white matter injury in the preterm infant. Neurotherapeutics 9:359–370

    Article  PubMed  PubMed Central  Google Scholar 

  11. Back S, Tuohy T, Chen H, Wallingford N, Craig A, Struve J, Luo N, Banine F, Liu Y, Chang A et al (2005) Hyaluronan accumulates in demyelinated lesions and inhibits oligodendrocyte progenitor maturation. Nat Med 9:966–972

    Google Scholar 

  12. Back SA, Craig A, Kayton R, Luo NL, Meshul C, Allcock N, Fern R (2007) Hypoxia-Ischemia preferentially triggers glutamate depletion from oligodendroglia and axons in perinatal cerebral white matter. J Cereb Blood Flow Metab 27:334–347

    Article  CAS  PubMed  Google Scholar 

  13. Back SA, Gan X-D, Li Y, Rosenberg PA, Volpe JJ (1998) Maturation-dependent vulnerability of oligodendrocytes to oxidative stress-induced death caused by glutathione depletion. J Neurosci 18:6241–6253

    CAS  PubMed  Google Scholar 

  14. Back SA, Han BH, Luo NL, Chrichton CA, Tam J, Xanthoudakis S, Arvin KL, Holtzman DM (2002) Selective vulnerability of late oligodendrocyte progenitors to hypoxia-ischemia. J Neurosci 22:455–463

    CAS  PubMed  Google Scholar 

  15. Back SA, Kroenke CD, Sherman LS, Lawrence G, Gong X, Taber EN, Sonnen JA, Larson EB, Montine TJ (2011) White matter lesions defined by diffusion tensor imaging in older adults. Ann Neurol 70:465–476. doi:10.1002/ana.22484

    Article  PubMed  PubMed Central  Google Scholar 

  16. Back SA, Luo NL, Borenstein NS, Levine JM, Volpe JJ, Kinney HC (2001) Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter injury. J Neurosci 21:1302–1312

    CAS  PubMed  Google Scholar 

  17. Back SA, Luo NL, Borenstein NS, Volpe JJ, Kinney HC (2002) Arrested oligodendrocyte lineage progression during human cerebral white matter development: dissociation between the timing of progenitor differentiation and myelinogenesis. J Neuropathol Exp Neurol 61:197–211

    Article  PubMed  Google Scholar 

  18. Back SA, Luo NL, Mallinson RA, O’Malley JP, Wallen LD, Frei B, Morrow JD, Petito CK, Roberts CT Jr, Murdoch GH et al (2005) Selective vulnerability of preterm white matter to oxidative damage defined by F2-isoprostanes. Ann Neurol 58:108–120

    Article  CAS  PubMed  Google Scholar 

  19. Back SA, Miller SP (2014) Brain injury in premature neonates: a primary cerebral dysmaturation disorder? Ann Neurol 75:469–486. doi:10.1002/ana.24132

    Article  PubMed  Google Scholar 

  20. Back SA, Rosenberg PA (2014) Pathophysiology of glia in perinatal white matter injury. Glia 62:1790–1815. doi:10.1002/glia.22658

    Article  PubMed  PubMed Central  Google Scholar 

  21. Baltan S, Murphy SP, Danilov CA, Bachleda A, Morrison RS (2011) Histone deacetylase inhibitors preserve white matter structure and function during ischemia by conserving ATP and reducing excitotoxicity. J Neurosci 31:3990–3999. doi:10.1523/jneurosci.5379-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Banker B, Larroche J (1962) Periventricular leukomalacia of infancy. A form of neonatal anoxic encephalopathy. Arch Neurol 7:386–410

    Article  CAS  PubMed  Google Scholar 

  23. Barres B, Schmid R, Sendnte M, Raff M (1993) Multiple extracellular signals are required for long-term oligodendrocyte survival. Development 118:283–295

    CAS  PubMed  Google Scholar 

  24. Barrett RD, Bennet L, Naylor A, George SA, Dean JM, Gunn AJ (2012) Effect of cerebral hypothermia and asphyxia on the subventricular zone and white matter tracts in preterm fetal sheep. Brain Res 1469:35–42. doi:10.1016/j.brainres.2012.06.018

    Article  CAS  PubMed  Google Scholar 

  25. Baud O, Greene A, Li J, Wang H, Volpe JJ, Rosenberg PA (2004) Glutathione peroxidase-catalase cooperativity is required for resistance to hydrogen peroxide by mature rat oligodendrocytes. J Neurosci 24:1531–1540

    Article  CAS  PubMed  Google Scholar 

  26. Baud O, Haynes R, Wang H, Folkerth RD, Li J, Volpe J, Rosenberg PA (2004) Developmental up-regulation of MnSOD in rat oligodendrocytes confers protection against oxidative injury. Eur J Neurosci 19:2669–2681

    Article  Google Scholar 

  27. Bax M, Tydeman C, Flodmark O (2006) Clinical and MRI correlates of cerebral palsy: the European Cerebral Palsy Study. JAMA 296:1602–1608

    Article  CAS  PubMed  Google Scholar 

  28. Beaino G, Khoshnood B, Kaminski M, Pierrat V, Marret S, Matis J, Ledesert B, Thiriez G, Fresson J, Roze JC et al (2010) Predictors of cerebral palsy in very preterm infants: the EPIPAGE prospective population-based cohort study. Dev Med Child Neurol 52:e119–e125. doi:10.1111/j.1469-8749.2010.03612.x

    Article  PubMed  Google Scholar 

  29. Billiards S, Haynes R, Folkerth R, Borenstein NS, Trachtenberg F, Rowitch D, Ligon K, Volpe J, Kinney H (2008) Myelin abnormalities without oligodendrocyte loss in periventricular leukomalacia. Brain Pathol 18:153–163

    Article  PubMed  PubMed Central  Google Scholar 

  30. Billiards SS, Haynes RL, Folkerth RD, Trachtenberg FL, Liu LG, Volpe JJ, Kinney HC (2006) Development of microglia in the cerebral white matter of the human fetus and infant. J Comp Neurol 497:199–208. doi:10.1002/cne.20991

    Article  PubMed  Google Scholar 

  31. Boardman JP, Counsell SJ, Rueckert D, Hajnal JV, Bhatia KK, Srinivasan L, Kapellou O, Aljabar P, Dyet LE, Rutherford MA et al (2007) Early growth in brain volume is preserved in the majority of preterm infants. Ann Neurol 62:185–192. doi:10.1002/ana.21171

    Article  PubMed  Google Scholar 

  32. Brummelte S, Grunau RE, Chau V, Poskitt KJ, Brant R, Vinall J, Gover A, Synnes AR, Miller SP (2012) Procedural pain and brain development in premature newborns. Ann Neurol 71:385–396. doi:10.1002/ana.22267

    Article  PubMed  PubMed Central  Google Scholar 

  33. Buser J, Maire J, Riddle A, Gong X, Nguyen T, Nelson K, Luo N, Ren J, Struve J, Sherman L et al (2012) Arrested preoligodendrocyte maturation contributes to myelination failure in premature infants. Ann Neurol 71:93–109

    Article  PubMed  PubMed Central  Google Scholar 

  34. Buser J, Segovia K, Dean J, Nelson K, Beardsley D, Gong X, Luo N, Ren J, Wan Y, Riddle A et al (2010) Timing of appearance of late oligodendrocyte progenitors coincides with enhanced susceptibility of preterm rabbit cerebral white matter to hypoxia-ischemia. J Cereb Blood Flow Metab 30:1053–1065

    Article  PubMed  PubMed Central  Google Scholar 

  35. Cao Y, Gunn A, Bennet L, Wu D, George S, Gluckman PD, Shao X-M, Guan J (2003) Insulin-like growth factor (IGF)-1 suppresses oligodendrocyte caspase-3 activation and increases glial proliferation after ischemia in near-term fetal sheep. J Cereb Blood Flow Metab 23:739–747

    Article  CAS  PubMed  Google Scholar 

  36. card: MoDPBr (2016) http://www.multivu.com/players/English/7945951-march-of-dimes-premature-birth-report/docs/premature-report-149208847.pdf

  37. Cargill R, Kohama SG, Struve J, Su W, Banine F, Witkowski E, Back SA, Sherman LS (2012) Astrocytes in aged nonhuman primate brain gray matter synthesize excess hyaluronan. Neurobiol Aging 33(830):e813–e824. doi:10.1016/j.neurobiolaging.2011.07.006

    Google Scholar 

  38. Castillo-Melendez M, Chow J, Walker D (2004) Lipid peroxidation, caspase-3 immunoreactivity, and pyknosis in late-gestation fetal sheep brain after umbilical cord occlusion. Pediatr Res 55:864–871

    Article  CAS  PubMed  Google Scholar 

  39. Chau V, Synnes A, Grunau R, Poskitt K, Brant R, Miller S (2013) Abnormal brain maturation in preterm neonates associated with adverse developmental outcomes. Neurology 81:2082–20889

    Article  PubMed  PubMed Central  Google Scholar 

  40. Cheng Y, Deshmukh M, D’Costa A, Demaro J, Gidday J, Shah A, Sun Y, Jacquin M, Johnson E Jr, Holtzman D (1998) Caspase inhibitor affords neuroprotection with delayed adminstration in a rat model of neonatal hypoxic-ischemic brain injury. J Clin Investig 101:1992–1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Clouchoux C, du Plessis AJ, Bouyssi-Kobar M, Tworetzky W, McElhinney DB, Brown DW, Gholipour A, Kudelski D, Warfield SK, McCarter RJ et al (2013) Delayed cortical development in fetuses with complex congenital heart disease. Cereb Cortex 23:2932–2943. doi:10.1093/cercor/bhs281

    Article  CAS  PubMed  Google Scholar 

  42. Constantinou JC, Adamson-Macedo EN, Mirmiran M, Fleisher BE (2007) Movement, imaging and neurobehavioral assessment as predictors of cerebral palsy in preterm infants. J Perinatol 27:225–229. doi:10.1038/sj.jp.7211664

    Article  CAS  PubMed  Google Scholar 

  43. Counsell S, Allsop J, Harrison M, Larkman D, Kennea N, Kapellou O, Cowan F, Hajnal J, Edwards A, Rutherford M (2003) Diffusion-weighted imaging of the brain in preterm infants with focal and diffuse white matter abnormality. Pediatrics 112:176–180

    Article  Google Scholar 

  44. Craig A, Luo NL, Beardsley DJ, Wingate-Pearse N, Walker DW, Hohimer AR, Back SA (2003) Quantitative analysis of perinatal rodent oligodendrocyte lineage progression and its correlation with human. Exp Neurol 181:231–240

    Article  PubMed  Google Scholar 

  45. Dean J, McClendon E, Hansen K, Azimi-Zonooz A, Chen K, Riddle A, Gong X, Sharifnia E, Hagen M, Ahmad T et al (2013) Prenatal cerebral ischemia disrupts MRI-defined cortical microstructure through disturbances in neuronal arborization. Sci Transl Med 5:101–111

    Article  CAS  Google Scholar 

  46. Dean J, Moravec M, Grafe M, Abend N, Ren J, Gong X, Volpe J, Jensen F, Hohimer A, Back S (2011) Strain-specific differences in perinatal rodent oligodendrocyte lineage progression and its correlation with human. Dev Neurosci 33(3–4):251–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Deguchi K, Oguchi K, Takashima S (1997) Characteristic neuropathology of leukomalacia in extremely low birth weight infants. Pediatr Neurol 16:296–300

    Article  CAS  PubMed  Google Scholar 

  48. Delobel-Ayoub M, Arnaud C, White-Koning M, Casper C, Pierrat V, Garel M, Burguet A, Roze JC, Matis J, Picaud JC et al (2009) Behavioral problems and cognitive performance at 5 years of age after very preterm birth: the EPIPAGE study. Pediatrics 123:1485–1492. doi:10.1542/peds.2008-1216

    Article  PubMed  Google Scholar 

  49. Derrick M, Luo NL, Bregman JC, Jilling T, Ji X, Fisher K, Gladson CL, Beardsley DJ, Murdoch GA, Back SA et al (2004) Preterm fetal hypoxia causes hypertonia and motor deficits in the neonatal rabbit: a model for human cerebral palsy? J Neurosci 24:24–34

    Article  CAS  PubMed  Google Scholar 

  50. Dewald LE, Rodriguez JP, Levine JM (2011) The RE1 binding protein REST regulates oligodendrocyte differentiation. J Neurosci 31:3470–3483. doi:10.1523/jneurosci.2768-10.2011

    Article  CAS  PubMed  Google Scholar 

  51. Dimitropoulos A, McQuillen PS, Sethi V, Moosa A, Chau V, Xu D, Brant R, Azakie A, Campbell A, Barkovich AJ et al (2013) Brain injury and development in newborns with critical congenital heart disease. Neurology 81:241–248. doi:10.1212/WNL.0b013e31829bfdcf

    Article  PubMed  PubMed Central  Google Scholar 

  52. Doyle L (2012) Antenatal magnesium sulfate and neuroprotection. Curr Opin Pediatr 24:154–159

    Article  CAS  PubMed  Google Scholar 

  53. Drobyshevsky A, Derrick M, Prasad P, Ji X, Englof I, Tan S (2007) Fetal brain magnetic resonance imaging response acutely to hypoxia-ischemia predicts postnatal outcome. Ann Neurol 61:307–314

    Article  PubMed  Google Scholar 

  54. Drobyshevsky A, Derrick M, Wyrwicz A, Ji X, Englof I, Ullman L, Zelaya M, Northington F, Tan S (2007) White matter injury correlates with hypertonia in an animal model of cerebral palsy. J Cereb Blood Flow Metab 27:270–281

    Article  CAS  PubMed  Google Scholar 

  55. Drobyshevsky A, Luo K, Derrick M, Yu L, Du H, Prasad PV, Vasquez-Vivar J, Batinic-Haberle I, Tan S (2012) Motor deficits are triggered by reperfusion-reoxygenation injury as diagnosed by MRI and by a mechanism involving oxidants. J Neurosci 32:5500–5509. doi:10.1523/jneurosci.5986-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Drobyshevsky A, Song S-K, Gamkrelidze G, Wyrwicz A, Derrick M, Meng F, Li L, Ji X, Trommer D, Beardsley D et al (2005) Developmental changes in diffusion anisotropy coincide with immature oligodendrocyte progression and maturation of compound action potential. J Neurosci 25:5988–5997

    Article  CAS  PubMed  Google Scholar 

  57. Dugas JC, Cuellar TL, Scholze A, Ason B, Ibrahim A, Emery B, Zamanian JL, Foo LC, McManus MT, Barres BA (2010) Dicer1 and miR-219 are required for normal oligodendrocyte differentiation and myelination. Neuron 65:597–611. doi:10.1016/j.neuron.2010.01.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Emery B, Agalliu D, Cahoy JD, Watkins TA, Dugas JC, Mulinyawe SB, Ibrahim A, Ligon KL, Rowitch DH, Barres BA (2009) Myelin gene regulatory factor is a critical transcriptional regulator required for CNS myelination. Cell 138:172–185. doi:10.1016/j.cell.2009.04.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Engelhardt E, Inder TE, Alexopoulos D, Dierker DL, Hill J, Van Essen D, Neil JJ (2015) Regional impairments of cortical folding in premature infants. Ann Neurol 77:154–162. doi:10.1002/ana.24313

    Article  PubMed  Google Scholar 

  60. Fancy SP, Baranzini SE, Zhao C, Yuk DI, Irvine KA, Kaing S, Sanai N, Franklin RJ, Rowitch DH (2009) Dysregulation of the Wnt pathway inhibits timely myelination and remyelination in the mammalian CNS. Genes Dev 23:1571–1585. doi:10.1101/gad.1806309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fancy SP, Harrington EP, Yuen TJ, Silbereis JC, Zhao C, Baranzini SE, Bruce CC, Otero JJ, Huang EJ, Nusse R et al (2011) Axin2 as regulatory and therapeutic target in newborn brain injury and remyelination. Nat Neurosci 14:1009–1016. doi:10.1038/nn.2855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fancy SP, Kotter MR, Harrington EP, Huang JK, Zhao C, Rowitch DH, Franklin RJ (2010) Overcoming remyelination failure in multiple sclerosis and other myelin disorders. Exp Neurol 225:18–23. doi:10.1016/j.expneurol.2009.12.020

    Article  CAS  PubMed  Google Scholar 

  63. Fauchere JC, Koller BM, Tschopp A, Dame C, Ruegger C, Bucher HU (2015) Safety of early high-dose recombinant erythropoietin for neuroprotection in very preterm infants. J Pediatr. doi:10.1016/j.jpeds.2015.02.052

    PubMed  Google Scholar 

  64. Feigenson K, Reid M, See J, Crenshaw EB 3rd, Grinspan JB (2009) Wnt signaling is sufficient to perturb oligodendrocyte maturation. Mol Cell Neurosci 42:255–265. doi:10.1016/j.mcn.2009.07.010

    Article  CAS  PubMed  Google Scholar 

  65. Felling RJ, Snyder MJ, Romanko MJ, Rothstein RP, Ziegler AN, Yang Z, Givogri MI, Bongarzone ER, Levison SW (2006) Neural stem/progenitor cells participate in the regenerative response to perinatal hypoxia/ischemia. J Neurosci 26:4359–4369. doi:10.1523/jneurosci.1898-05.2006

    Article  CAS  PubMed  Google Scholar 

  66. Fern R, Davis P, Waxman S, Ransom B (1998) Axon conduction and survival in CNS white matter during energy deprivation: a developmental study. J Neurophysiol 79:95–105

    CAS  PubMed  Google Scholar 

  67. Fern R, Moller T (2000) Rapid ischemic cell death in immature oligodendrocytes: a fatal glutamate release feedback loop. J Neurosci 20:34–42

    CAS  PubMed  Google Scholar 

  68. Ferriero DM, Miller SP (2010) Imaging selective vulnerability in the developing nervous system. J Anat 217:429–435. doi:10.1111/j.1469-7580.2010.01226.x

    Article  PubMed  PubMed Central  Google Scholar 

  69. Folkerth R, Haynes R, Borenstein NS, Volpe JJ, Kinney HC (2004) Developmental lag in superoxide dismutases relative to other antioxidant enzymes in premyelinated human telencephalic white matter. J Neuropathol Exp Neurol 63:990–999

    Article  CAS  PubMed  Google Scholar 

  70. Fragoso G, Martinez-Bermudez A, Lui H-N, Khorchid A, Chemtob S, Mushynski W, Almazan G (2004) Developmental differences in H2O2-induced oligodendrocyte cell death: role of glutathione, mitogen-activated protein kinases and caspase 3. J Neurochem 90:392–404

    Article  CAS  PubMed  Google Scholar 

  71. French HM, Reid M, Mamontov P, Simmons RA, Grinspan JB (2009) Oxidative stress disrupts oligodendrocyte maturation. J Neurosci Res 87:3076–3087. doi:10.1002/jnr.22139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gaynor J (2004) Periventricular leukomalacia following neonatal and infant cardiac surgery. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 7:133–140

    Article  PubMed  Google Scholar 

  73. Glass HC, Fujimoto S, Ceppi-Cozzio C, Bartha AI, Vigneron DB, Barkovich AJ, Glidden DV, Ferriero DM, Miller SP (2008) White-matter injury is associated with impaired gaze in premature infants. Pediatr Neurol 38:10–15. doi:10.1016/j.pediatrneurol.2007.08.019

    Article  PubMed  PubMed Central  Google Scholar 

  74. Gleason CA, Hamm C, Jones MD Jr (1989) Cerebral blood flow, oxygenation, and carbohydrate metabolism in immature fetal sheep in utero. AmJPhysiol 256:R1264–R1268

    CAS  Google Scholar 

  75. Gonzalez FF, Larpthaveesarp A, McQuillen P, Derugin N, Wendland M, Spadafora R, Ferriero DM (2013) Erythropoietin increases neurogenesis and oligodendrogliosis of subventricular zone precursor cells after neonatal stroke. Stroke 44:753–758. doi:10.1161/strokeaha.111.000104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Greisen G (1986) Cerebral blood flow in preterm infants during the first week of life. Acta Paediatr Scand 75:43–51

    Article  CAS  PubMed  Google Scholar 

  77. Gressens P, Schwendimann L, Husson I, Sarkozy G, Mocaer E, Vamecq J, Spedding M (2008) Agomelatine, a melatonin receptor agonist with 5-HT(2C) receptor antagonist properties, protects the developing murine white matter against excitotoxicity. Eur J Pharmacol 588:58–63. doi:10.1016/j.ejphar.2008.04.016

    Article  CAS  PubMed  Google Scholar 

  78. Griffith JL, Shimony JS, Cousins SA, Rees SE, McCurnin DC, Inder TE, Neil JJ (2012) MR imaging correlates of white-matter pathology in a preterm baboon model. Pediatr Res 71:185–191. doi:10.1038/pr.2011.33

    Article  PubMed  Google Scholar 

  79. Groenendaal F, Termote JU, van der Heide-Jalving M, van Haastert IC, de Vries LS (2010) Complications affecting preterm neonates from 1991 to 2006: what have we gained? Acta Paediatr 99:354–358. doi:10.1111/j.1651-2227.2009.01648.x

    Article  CAS  PubMed  Google Scholar 

  80. Gunn A, Bennet L (2008) Brain cooling for preterm infants. Clin Perinatal 35:735–748

    Article  Google Scholar 

  81. Hack M, Taylor H, Drotar D, Schluchter M, Cartar L, Andreias L, Wilson-Costello D, Klein N (2005) Chronic conditions, functional limitations, and special health care needs of school-aged children born with extremely low-birth-weight in the 1990’s. JAMA 294:318–325

    Article  CAS  PubMed  Google Scholar 

  82. Hagberg H, Peebles D, Mallard C (2002) Models of white matter injury: comparison of infectious, hypoxic-ischemic, and excitotoxic insults. MRDD Res Rev 8:30–38

    Google Scholar 

  83. Hagen MW, Riddle A, McClendon E, Gong X, Shaver D, Srivastava T, Dean JM, Bai JZ, Fowke TM, Gunn AJ et al (2014) Role of recurrent hypoxia-ischemia in preterm white matter injury severity. PLoS ONE 9:e112800. doi:10.1371/journal.pone.0112800

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Hamrick S, Miller SP, Leonard C, Glidden D, Goldstein R, Ramaswamy V, Piecuchi R, Ferriero DM (2004) Trends in severe brain injury and neurodevelopmental outcome in premature newborn infants: the role of cystic periventricular leukomalacia. J Pediatr 145:593–599

    Article  PubMed  Google Scholar 

  85. Han B, D’Costa A, Back SA, Parsadian M, Patel S, Shah A, Gidday J, Srinvasan A, Deshmukh M, Holtzman D (2000) BDNF blocks caspase-3 activation in neonatal hypoxia-ischemia. Neurobiol Dis 7:38–53

    Article  CAS  PubMed  Google Scholar 

  86. Hasegawa K, Yoshioka H, Sawada T, Nishikawa H (1991) Lipid peroxidation in neonatal mouse brain subjected to two different types of hypoxia. Brain Dev 13:101–103

    Article  CAS  PubMed  Google Scholar 

  87. Haynes RL, Billiards SS, Borenstein NS, Volpe JJ, Kinney HC (2008) Diffuse axonal injury in periventricular leukomalacia as determined by apoptotic marker fractin. Pediatr Res 63:656–661. doi:10.1203/PDR.0b013e31816c825c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Haynes RL, Folkerth RD, Keefe RJ, Sung I, Swzeda LI, Rosenberg PA, Volpe JJ, Kinney HC (2003) Nitrosative and oxidative injury to premyelinating oligodendrocytes in periventricular leukomalacia. J Neuropathol Exp Neurol 62:441–450

    Article  PubMed  Google Scholar 

  89. Hirayama A, Okoshi Y, Hachiya Y, Ozawa Y, Ito M, Kida Y, Imai Y, Kohsaka S, Takashima S (2001) Early immunohistochemical detection of axonal damage and glial activation in extremely immature brains with periventricular leukomalacia. Clin Neuropathol 20:87–91

    CAS  PubMed  Google Scholar 

  90. Huppi PS, Murphy B, Maier SE, Zientara GP, Inder TE, Barnes PD, Kikinis R, Jolesz FA, Volpe JJ (2001) Microstructural brain development after perinatal cerebral white matter injury assessed by diffusion tensor magnetic resonance imaging. Pediatrics 107:455–460

    Article  CAS  PubMed  Google Scholar 

  91. Iida K, Takashima S, Ueda K (1995) Immunohistochemical study of myelination and oligodendrocyte in infants with periventricular leukomalacia. Pediatr Neurol 13:296–304

    Article  CAS  PubMed  Google Scholar 

  92. Inage YW, Itoh M, Takashima S (2000) Correlation between cerebrovascular maturity and periventricular leukomalacia. Pediatr Neurol 22:204–208

    Article  CAS  PubMed  Google Scholar 

  93. Inder TE, Anderson NJ, Spencer C, Wells S, Volpe JJ (2003) White matter injury in the premature infant: a comparison between serial cranial sonographic and MR findings at term. AJNR AmJNeuroradiol 24:805–809

    Google Scholar 

  94. Ivkovic S, Canoll P, Goldman JE (2008) Constitutive EGFR signaling in oligodendrocyte progenitors leads to diffuse hyperplasia in postnatal white matter. J Neurosci 28:914–922. doi:10.1523/jneurosci.4327-07.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Iwai M, Stetler RA, Xing J, Hu X, Gao Y, Zhang W, Chen J, Cao G (2010) Enhanced oligodendrogenesis and recovery of neurological function by erythropoietin after neonatal hypoxic/ischemic brain injury. Stroke 41:1032–1037. doi:10.1161/strokeaha.109.570325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Jacobson LK, Dutton GN (2000) Periventricular leukomalacia: an important cause of visual and ocular motility dysfunction in children. Surv Ophthalmol 45:1–13

    Article  CAS  PubMed  Google Scholar 

  97. Jakovcevski I, Filipovic R, Mo Z, Rakic S, Zecevic N (2009) Oligodendrocyte development and the onset of myelination in the human fetal brain. Front Neuroanat 3:5. doi:10.3389/neuro.05.005.2009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Jakovcevski I, Zecevic N (2005) Sequence of oligodendrocyte development in the human fetal telencephalon. Glia 49:480–491

    Article  PubMed  Google Scholar 

  99. Janero DR (1990) Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med 9:515–540

    Article  CAS  PubMed  Google Scholar 

  100. Jantzie LL, Miller RH, Robinson S (2013) Erythropoietin signaling promotes oligodendrocyte development following prenatal systemic hypoxic-ischemic brain injury. Pediatr Res 74:658–667. doi:10.1038/pr.2013.155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. John G, Shankar S, Shafit-Zagardo B, Massimi A, Lee S, Raine C, Brosnan C (2002) Multiple sclerosis: re-expression of a developmental pathway that restricts oligodendrocyte maturation. Nat Med 8:1115–1121

    Article  CAS  PubMed  Google Scholar 

  102. Juul SE, Mayock DE, Comstock BA, Heagerty PJ (2015) Neuroprotective potential of erythropoietin in neonates; design of a randomized trial. Maternal Health Neonatol Perinatol 1:27. doi:10.1186/s40748-015-0028-z

    Article  Google Scholar 

  103. Kako E, Kaneko N, Aoyama M, Hida H, Takebayashi H, Ikenaka K, Asai K, Togari H, Sobue K, Sawamoto K (2012) Subventricular zone-derived oligodendrogenesis in injured neonatal white matter in mice enhanced by a nonerythropoietic erythropoietin derivative. Stem cells 30:2234–2247. doi:10.1002/stem.1202

    Article  CAS  PubMed  Google Scholar 

  104. Kersbergen KJ, Benders MJ, Groenendaal F, Koopman-Esseboom C, Nievelstein RA, van Haastert IC, de Vries LS (2014) Different patterns of punctate white matter lesions in serially scanned preterm infants. PLoS ONE 9:e108904. doi:10.1371/journal.pone.0108904

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Kesler SR, Reiss AL, Vohr B, Watson C, Schneider KC, Katz KH, Maller-Kesselman J, Silbereis J, Constable RT, Makuch RW et al (2008) Brain volume reductions within multiple cognitive systems in male preterm children at age twelve. J Pediatr. doi:10.1016/j.jpeds.2007.08.009

    PubMed  Google Scholar 

  106. Lasry O, Shevell MI, Dagenais L (2010) Cross-sectional comparison of periventricular leukomalacia in preterm and term children. Neurology 74:1386–1391. doi:10.1212/WNL.0b013e3181dad62d

    Article  PubMed  Google Scholar 

  107. Lee Y, Morrison B, Li Y, Lengacher S, Farah M, Hoffman P, Liu Y, Tsinalia A, Jin L, Zhang P-W et al (2012) Oligodendrolia metabolically support axons and contribute to neurodegeneration. Nature 487:443–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Li AM, Chau V, Poskitt KJ, Sargent MA, Lupton BA, Hill A, Roland E, Miller SP (2009) White matter injury in term newborns with neonatal encephalopathy. Pediatr Res 65:85–89. doi:10.1203/PDR.0b013e31818912d2

    Article  PubMed  Google Scholar 

  109. Li W, Zhang B, Tang J, Cao Q, Wu Y, Wu C, Guo J, Ling EA, Liang F (2007) Sirtuin 2, a mammalian homolog of yeast silent information regulator-2 longevity regulator, is an oligodendroglial protein that decelerates cell differentiation through deacetylating alpha-tubulin. J Neurosci 27:2606–2616. doi:10.1523/jneurosci.4181-06.2007

    Article  PubMed  CAS  Google Scholar 

  110. Licht DJ, Shera DM, Clancy RR, Wernovsky G, Montenegro LM, Nicolson SC, Zimmerman RA, Spray TL, Gaynor JW, Vossough A (2009) Brain maturation is delayed in infants with complex congenital heart defects. J Thorac Cardiovasc Surg 137:529–536. doi:10.1016/j.jtcvs.2008.10.025 (discussion 536-527)

    Article  PubMed  PubMed Central  Google Scholar 

  111. Limperopoulos C, Tworetzky W, McElhinney DB, Newburger JW, Brown DW, Robertson RL Jr, Guizard N, McGrath E, Geva J, Annese D et al (2010) Brain volume and metabolism in fetuses with congenital heart disease: evaluation with quantitative magnetic resonance imaging and spectroscopy. Circulation 121:26–33. doi:10.1161/circulationaha.109.865568

    Article  CAS  PubMed  Google Scholar 

  112. Lin S, Rhodes P, Lei M, Zhang F, Cai Z (2004) a-Phenyl-n-tert-butyl-nitrone attenuates hypoxic-ischemic white matter injury in the neonatal rat brain. Brain Res 1007:132–141

    Article  CAS  PubMed  Google Scholar 

  113. Litt J, Taylor H, Klein N, Hack M (2005) Learning disabilities in children with very low birthweight:prevalence, neuropsychological correlates and educational interventions. J Learn Disabil 8:130–141

    Article  Google Scholar 

  114. Liu J, Li J, Qin GL, Chen YH, Wang Q (2008) Periventricular leukomalacia in premature infants in mainland China. Am J Perinatol 25:535–540. doi:10.1055/s-0028-1083841

    Article  PubMed  Google Scholar 

  115. Liu L, Oza S, Hogan D, Chu Y, Perin J, Zhu J, Lawn JE, Cousens S, Mathers C, Black RE (2017) Global, regional, and national causes of under-5 mortality in 2000-15: an updated systematic analysis with implications for the Sustainable Development Goals. Lancet 388:3027–3035. doi:10.1016/s0140-6736(16)31593-8

    Article  Google Scholar 

  116. Liu W, Shen Y, Plane JM, Pleasure DE, Deng W (2011) Neuroprotective potential of erythropoietin and its derivative carbamylated erythropoietin in periventricular leukomalacia. Exp Neurol 230:227–239. doi:10.1016/j.expneurol.2011.04.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lodygensky GA, West T, Moravec MD, Back SA, Dikranian K, Holtzman DM, Neil JJ (2011) Diffusion characteristics associated with neuronal injury and glial activation following hypoxia-ischemia in the immature brain. Magn Reson Med 66:839–845. doi:10.1002/mrm.22869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Loeliger M, Inder T, Cain S, Ramesh RC, Camm E, Thomson MA, Coalson J, Rees SM (2006) Cerebral outcomes in a preterm baboon model of early versus delayed nasal continuous positive airway pressure. Pediatrics 118:1640–1653. doi:10.1542/peds.2006-0653

    Article  PubMed  Google Scholar 

  119. Maalouf E, Duggan P, Counsell SJ, Rutherford MA, Cowan FM, Azzopardi D, Edwards A (2001) Comparison of findings on cranial ultrasound and magnetic resonance imaging in preterm infants. Pediatrics 107:719–727

    Article  CAS  PubMed  Google Scholar 

  120. Mallard E, Rees S, Stringer M, Cock M, Harding R (1998) Effects of chronic placental insufficiency on brain development in fetal sheep. Pediatr Res 43:262–270

    Article  CAS  PubMed  Google Scholar 

  121. Marin-Padilla M (1997) Developmental neuropathology and impact of perinatal brain damage. II: white matter lesions of the neocortex. J Neuropathol Exp Neurol 56:219–235

    Article  CAS  PubMed  Google Scholar 

  122. Marret S, Mukendi R, Gadisseux J-F, Gressens P, Evrard P (1995) Effect of ibotenate on brain development: an excitotoxic mouse model of microgyria and posthypoxic-like lesions. J Neuropathol Exp Neurol 54:358–370

    Article  CAS  PubMed  Google Scholar 

  123. Martinez-Biarge M, Madero R, Gonzalez A, Quero J, Garcia-Alix A (2012) Perinatal morbidity and risk of hypoxic-ischemic encephalopathy associated with intrapartum sentinel events. Am J Obstet Gynecol. doi:10.1016/j.ajog.2011.09.031

    PubMed  Google Scholar 

  124. McClain CR, Sim FJ, Goldman SA (2012) Pleiotrophin suppression of receptor protein tyrosine phosphatase-beta/zeta maintains the self-renewal competence of fetal human oligodendrocyte progenitor cells. J Neurosci 32:15066–15075. doi:10.1523/jneurosci.1320-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. McClendon E, Chen K, Gong X, Sharifnia E, Hagen M, Cai V, Shaver DC, Riddle A, Dean JM, Gunn AJ et al (2014) Prenatal cerebral ischemia triggers dysmaturation of caudate projection neurons. Ann Neurol. doi:10.1002/ana.24100

    PubMed  PubMed Central  Google Scholar 

  126. McClure M, Riddle A, Manese M, Luo N, Rorvik D, Kelly K, Barlow C, Kelly JJEJ, Bernard SL, Glenny RW, Barlow CH, Vinecore K, Roberts C et al (2008) Cerebral blood flow heterogeneity in preterm sheep: lack of physiological support for vascular boundary zones in fetal cerebral white matter. J Cereb Blood Flow Metab 28:995–1008

    Article  PubMed  Google Scholar 

  127. McQuillen P, Miller S (2010) Congenital heart disease and brain development. Ann N Y Acad Sci 1184:68–86

    Article  CAS  PubMed  Google Scholar 

  128. Ment LR, Hirtz D, Huppi PS (2009) Imaging biomarkers of outcome in the developing preterm brain. Lancet Neurol 8:1042–1055. doi:10.1016/s1474-4422(09)70257-1

    Article  PubMed  Google Scholar 

  129. Mercier CE, Dunn MS, Ferrelli KR, Howard DB, Soll RF (2010) Neurodevelopmental outcome of extremely low birth weight infants from the Vermont Oxford network: 1998-2003. Neonatology 97:329–338. doi:10.1159/000260136

    Article  PubMed  Google Scholar 

  130. Miller S, Vigneron D, Henry R, Bohland M, Ceppi-Cozzio C, Hoffman C, Newton N, Partridge JC, Ferriero DM, Barkovich AJ (2002) Serial quantitative diffusion tensor MRI of the premature brain: development in newborns with and without injury. J Magn ResonImaging 16:621–632

    Google Scholar 

  131. Miller SP, Cozzio CC, Goldstein RB, Ferriero DM, Partridge JC, Vigneron DB, Barkovich AJ (2003) Comparing the diagnosis of white matter injury in premature newborns with serial MR imaging and transfontanel ultrasonagraphy findings. AJNR Am J Neuroradiol 24:1661–1669

    PubMed  Google Scholar 

  132. Miller SP, Ferriero DM, Leonard C, Piecuch R, Glidden D, Partridge JC, Perez M, Mukherjee P, Vigneron D, Barkovich AJ (2005) Early brain injury in premature newborns detected with magnetic resonance imaging is associated with adverse neurodevelopmental outcome. J Pediatr 147:609–616

    Article  PubMed  Google Scholar 

  133. Miller SP, McQuillen PS, Hamrick S, Xu D, Glidden DV, Charlton N, Karl T, Azakie A, Ferriero DM, Barkovich AJ et al (2007) Abnormal brain development in newborns with congenital heart disease. N Engl J Med 357:1928–1938. doi:10.1056/NEJMoa067393

    Article  CAS  PubMed  Google Scholar 

  134. Mishra OP, Delivoria-Papadopoulos M (1989) Lipid peroxidation in developing fetal guinea pig brain during normoxia and hypoxia. Brain Res Dev Brain Res 45:129–135

    Article  CAS  PubMed  Google Scholar 

  135. Miyawaki T, Matsui K, Takashima S (1998) Developmental characteristics of vessel density in the human fetal and infant brains. Early Hum Dev 53:65–72

    Article  CAS  PubMed  Google Scholar 

  136. Montine K, Quinn J, Zhang J, Fessel J, Roberts LJ, Morrow JD, Montine TJ (2004) Isoprostanes and related products of lipid peroxidation. Chem Phy Lipids 128:117–124

    Article  CAS  Google Scholar 

  137. Natalucci G, Latal B, Koller B, Ruegger C, Sick B, Held L, Bucher HU, Fauchere JC (2016) Effect of early prophylactic high-dose recombinant human erythropoietin in very preterm infants on neurodevelopmental outcome at 2 years: a randomized clinical trial. JAMA 315:2079–2085. doi:10.1001/jama.2016.5504

    Article  CAS  PubMed  Google Scholar 

  138. Nelson MD Jr, Gonzalez-Gomez I, Gilles FH (1991) Dyke Award. The search for human telencephalic ventriculofugal arteries. AJNR AmJNeuroradiol 12:215–222

    Google Scholar 

  139. Ness JK, Romanko MJ, Rothstein RP, Wood TL, Levison SW (2001) Perinatal hypoxia-ischemia induces apoptotic and excitotoxic death of periventricular white matter oligodendrocyte progenitors. Dev Neurosci 23:203–208

    Article  CAS  PubMed  Google Scholar 

  140. O’Gorman RL, Bucher HU, Held U, Koller BM, Huppi PS, Hagmann CF (2015) Tract-based spatial statistics to assess the neuroprotective effect of early erythropoietin on white matter development in preterm infants. Brain 138:388–397. doi:10.1093/brain/awu363

    Article  PubMed  Google Scholar 

  141. Pagliano E, Fedrizzi E, Erbetta A, Bulgheroni S, Solari A, Bono R, Fazzi E, Andreucci E, Riva D (2007) Cognitive profiles and visuoperceptual abilities in preterm and term spastic diplegic children with periventricular leukomalacia. J Child Neurol 22:282–288. doi:10.1177/0883073807300529

    Article  PubMed  Google Scholar 

  142. Peterson BS, Vohr B, Staib LH, Cannistraci CJ, Dolberg A, Schneider KC, Katz KH, Westerveld M, Sparrow S, Anderson AW et al (2000) Regional brain volume abnormalities and long-term cognitive outcome in preterm infants. JAMA 284:1939–1947

    Article  CAS  PubMed  Google Scholar 

  143. Pierson CR, Folkerth RD, Billiards SS, Trachtenberg FL, Drinkwater ME, Volpe JJ, Kinney HC (2007) Gray matter injury associated with periventricular leukomalacia in the premature infant. Acta Neuropathol 114:619–631. doi:10.1007/s00401-007-0295-5

    Article  PubMed  PubMed Central  Google Scholar 

  144. Powers WJ, Grubb RL, Darriet D, Raichle ME (1985) Cerebral blood flow and cerebral metabolic rate of oxygen requirements for cerebral function and viability in humans. J Cereb Blood Flow Metab 5:600–608

    Article  CAS  PubMed  Google Scholar 

  145. Preston M, Gong X, Su W, Matsumoto SG, Banine F, Winkler C, Foster S, Xing R, Struve J, Dean J et al (2013) Digestion products of the PH20 hyaluronidase inhibit remyelination. Ann Neurol 73:266–280. doi:10.1002/ana.23788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Pryds O, Andersen GE, Friis-Hansen B (1990) Cerebral blood flow reactivity in spontaneously breathing, preterm infants shortly after birth. Acta Paediatr Scand 79:391–396

    Article  CAS  PubMed  Google Scholar 

  147. Pryds O, Greisen G, Friis-Hansen B (1988) Compensatory increase of CBF in preterm infants during hypoglycaemia. Acta Paediatr Scand 77:632–637

    Article  CAS  PubMed  Google Scholar 

  148. Pryds O, Greisen G, Friis-Hansen B (1989) Heterogeneity of cerebral vasoreactivity in preterm infants supported by machanical ventilation. J Pediatr 115:638–645

    Article  CAS  PubMed  Google Scholar 

  149. Rakic S, Zecevic N (2003) Early oligodendrocyte precursor cells in the human fetal telencephalon. Glia 41:117–127

    Article  PubMed  Google Scholar 

  150. Rees S, Mallard C, Breen S, Stringer M, Cock M, Harding R (1998) Fetal brain injury following prolonged hypoxemia and placental insufficiency: a review. Comp Biochem Physiol A 119:653–660

    Article  CAS  Google Scholar 

  151. Riddle A, Dean J, Buser J, Gong X, Maire J, Chen K, Ahmad T, Chen V, Nguyen T, Kroenke C et al (2011) Histopathological correlates of MRI-defined chronic perinatal white matter injury. Ann Neurol 70:493–507

    Article  PubMed  PubMed Central  Google Scholar 

  152. Riddle A, Luo N, Manese M, Beardsley D, Green L, Rorvik D, Kelly K, Barlow C, Kelly J, Hohimer A et al (2006) Spatial heterogeneity in oligodendrocyte lineage maturation and not cerebral blood flow predicts fetal ovine periventricular white matter injury. J Neurosci 26:3045–3055

    Article  CAS  PubMed  Google Scholar 

  153. Riddle A, Maire J, Cai V, Nguyen T, Gong X, Hansen K, Grafe MR, Hohimer AR, Back SA (2013) Hemodynamic and metabolic correlates of perinatal white matter injury severity. PLoS ONE 8:e82940. doi:10.1371/journal.pone.0082940

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Riddle A, Maire J, Gong X, Chen KX, Kroenke CD, Hohimer AR, Back SA (2012) Differential susceptibility to axonopathy in necrotic and non-necrotic perinatal white matter injury. Stroke 43:178–184. doi:10.1161/STROKEAHA.111.632265

    Article  PubMed  Google Scholar 

  155. Robertson NJ, Tan S, Groenendaal F, van Bel F, Juul SE, Bennet L, Derrick M, Back SA, Valdez RC, Northington F et al (2012) Which neuroprotective agents are ready for bench to bedside translation in the newborn infant? J Pediatr 160(544–552):e544. doi:10.1016/j.jpeds.2011.12.052

    Article  Google Scholar 

  156. Rosenberg PA, Weimin D, Gan XD, Ali S, Back SA, Sanchez RM, Segal MM, Follet PE, Jensen FE, Volpe JJ (2003) Mature myelin basic protein expressing oligodendrocytes are insensitive to kainate toxicity. J Neurosci Res 71:237–245

    Article  CAS  PubMed  Google Scholar 

  157. Scafidi J, Fagel DM, Ment LR, Vaccarino FM (2009) Modeling premature brain injury and recovery. Int J Dev Neurosci 27:863–871. doi:10.1016/j.ijdevneu.2009.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Scafidi J, Hammond TR, Scafidi S, Ritter J, Jablonska B, Roncal M, Szigeti-Buck K, Coman D, Huang Y, McCarter RJ Jr et al (2014) Intranasal epidermal growth factor treatment rescues neonatal brain injury. Nature 506:230–234. doi:10.1038/nature12880

    Article  CAS  PubMed  Google Scholar 

  159. Segovia K, McClure M, Moravec M, Luo N, Wang Y, Gong X, Riddle A, Craig A, Struve J, Sherman L et al (2008) Arrested oligodendrocyte lineage maturation in chronic perinatal white matter injury. Ann Neurol 63:517–526

    Article  Google Scholar 

  160. Shen S, Li J, Casaccia-Bonnefil P (2005) Histone modifications affect timing of oligodendrocyte progenitor differentiation in the developing rat brain. J Cell Biol 169:577–589. doi:10.1083/jcb.200412101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Shin D, Shin JY, McManus MT, Ptacek LJ, Fu YH (2009) Dicer ablation in oligodendrocytes provokes neuronal impairment in mice. Ann Neurol 66:843–857. doi:10.1002/ana.21927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Silbereis J, Huang E, Back S, Rowitch D (2010) Toward improved animal models of neonatal white matter injury associate with cerebral palsy. Dis Models Mech 3:678–688

    Article  Google Scholar 

  163. Sizonenko SV, Bednarek N, Gressens P (2007) Growth factors and plasticity. Semin Fetal Neonatal Med 12:241–249. doi:10.1016/j.siny.2007.01.007

    Article  PubMed  Google Scholar 

  164. Skranes J, Lohaugen GC, Martinussen M, Haberg A, Brubakk AM, Dale AM (2013) Cortical surface area and IQ in very-low-birth-weight (VLBW) young adults. Cortex 49:2264–2271. doi:10.1016/j.cortex.2013.06.001

    Article  PubMed  Google Scholar 

  165. Sloane J, Batt C, Ma Y, Harris Z, Trapp B, Vartanian T (2010) Hyaluronan blocks oligodendrocyte progenitor maturation and remyelination through TLR2. Proc Natl Acad Sci USA 107:11555–11560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Smith GC, Gutovich J, Smyser C, Pineda R, Newnham C, Tjoeng TH, Vavasseur C, Wallendorf M, Neil J, Inder T (2011) Neonatal intensive care unit stress is associated with brain development in preterm infants. Ann Neurol 70:541–549. doi:10.1002/ana.22545

    Article  PubMed  PubMed Central  Google Scholar 

  167. Soria-Pastor S, Gimenez M, Narberhaus A, Falcon C, Botet F, Bargallo N, Mercader JM, Junque C (2008) Patterns of cerebral white matter damage and cognitive impairment in adolescents born very preterm. Int J Dev Neurosci 26:647–654. doi:10.1016/j.ijdevneu.2008.08.001

    Article  PubMed  Google Scholar 

  168. Soria-Pastor S, Padilla N, Zubiaurre-Elorza L, Ibarretxe-Bilbao N, Botet F, Costas-Moragas C, Falcon C, Bargallo N, Mercader JM, Junque C (2009) Decreased regional brain volume and cognitive impairment in preterm children at low risk. Pediatrics 124:e1161–e1170. doi:10.1542/peds.2009-0244

    Article  PubMed  Google Scholar 

  169. Soul J, Hammer P, Tsuji M, Saul J, Bassan H, Limperopoulous C, Disalvo D, Moore M, Akins P, Ringer S et al (2007) Fluctuating pressure-passivity is common in the cerebral circulation of sick premature infants. Pediatr Res 61:467–473

    Article  PubMed  Google Scholar 

  170. Spittle AJ, Boyd RN, Inder TE, Doyle LW (2009) Predicting motor development in very preterm infants at 12 months’ corrected age: the role of qualitative magnetic resonance imaging and general movements assessments. Pediatrics 123:512–517. doi:10.1542/peds.2008-0590

    Article  PubMed  Google Scholar 

  171. Spittle AJ, Brown NC, Doyle LW, Boyd RN, Hunt RW, Bear M, Inder TE (2008) Quality of general movements is related to white matter pathology in very preterm infants. Pediatrics 121:e1184–e1189. doi:10.1542/peds.2007-1924

    Article  PubMed  Google Scholar 

  172. Sun L, Macgowan CK, Sled JG, Yoo SJ, Manlhiot C, Porayette P, Grosse-Wortmann L, Jaeggi E, McCrindle BW, Kingdom J et al (2015) Reduced fetal cerebral oxygen consumption is associated with smaller brain size in fetuses with congenital heart disease. Circulation 131:1313–1323. doi:10.1161/circulationaha.114.013051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Szymonowicz W, Walker AM, Cussen L, Cannata J, Yu VY (1988) Developmental changes in regional cerebral blood flow in fetal and newborn lambs. AmJPhysiol 254:H52–H58

    CAS  Google Scholar 

  174. Takashima S, Tanaka K (1978) Development of cerebrovascular architecture and its relationship to periventricular leukomalacia. Arch Neurol 35:11–16

    Article  CAS  PubMed  Google Scholar 

  175. Tawk M, Makoukji J, Belle M, Fonte C, Trousson A, Hawkins T, Li H, Ghandour S, Schumacher M, Massaad C (2011) Wnt/beta-catenin signaling is an essential and direct driver of myelin gene expression and myelinogenesis. J Neurosci 31:3729–3742. doi:10.1523/jneurosci.4270-10.2011

    Article  CAS  PubMed  Google Scholar 

  176. Tsuji M, Saul J, du Plessis A, Eichenwald E, Sobh J, Crocker R, Volpe J (2000) Cerebral intravascular oxygenation correlates with mean arterial pressure in critically ill premature infants. Pediatrics 106:625–632

    Article  CAS  PubMed  Google Scholar 

  177. Vannucci RC, Vannucci SJ (2005) Perinatal hypoxic-ischemic brain damage: evolution of an animal model. Dev Neurosci 27:81–86. doi:10.1159/000085978

    Article  CAS  PubMed  Google Scholar 

  178. Verney C, Pogledic I, Biran V, Adle-Biassette H, Fallet-Bianco C, Gressens P (2012) Microglial reaction in axonal crossroads is a hallmark of noncystic periventricular white matter injury in very preterm infants. J Neuropathol Exp Neurol 71:251–264. doi:10.1097/NEN.0b013e3182496429

    Article  CAS  PubMed  Google Scholar 

  179. Vinall J, Miller SP, Chau V, Brummelte S, Synnes AR, Grunau RE (2012) Neonatal pain in relation to postnatal growth in infants born very preterm. Pain 153:1374–1381. doi:10.1016/j.pain.2012.02.007

    Article  PubMed  Google Scholar 

  180. Vohr BR (2014) Neurodevelopmental outcomes of extremely preterm infants. Clin Perinatol 41:241–255. doi:10.1016/j.clp.2013.09.003

    Article  PubMed  Google Scholar 

  181. Volpe JJ (2009) Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol 8:110–124

    Article  PubMed  PubMed Central  Google Scholar 

  182. Vose LR, Vinukonda G, Jo S, Miry O, Diamond D, Korumilli R, Arshad A, Zia MT, Hu F, Kayton RJ et al (2013) Treatment with thyroxine restores myelination and clinical recovery after intraventricular hemorrhage. J Neurosci 33:17232–17246. doi:10.1523/jneurosci.2713-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Wang Y, Cheng X, He Q, Zheng Y, Kim D, Whittemore S, Cao Q (2011) Astrocytes from the contused spinal cord inhibit oligodendrocyte differentiation of adult oligodendrocyte precursor cells by increasing the expression of bone morphogenetic proteins. J Neurosci 31:6053–6058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Wilson-Costello D, Fridedman H, Minich N, Fanaroff A, Hack M (2005) Improved survival rates with increased neurodevelopmental disability for extremely low birth weight infants in the 1990s. Pediatrics 115:997–1003

    Article  PubMed  Google Scholar 

  185. Wright J, Zhang G, Yu T-S, Kernie S (2010) Age-related changes in the oligodendrocyte progenitor pool influence brain remodeling after injury. Dev Neurosci 32:499–509

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Wu YW, Mathur AM, Chang T, McKinstry RC, Mulkey SB, Mayock DE, Van Meurs KP, Rogers EE, Gonzalez FF, Comstock BA et al (2016) High-dose erythropoietin and hypothermia for hypoxic-ischemic encephalopathy: a phase II trial. Pediatrics. doi:10.1542/peds.2016-0191

    Google Scholar 

  187. Yamada M, Burke C, Colditz P, Johnson DW, Gobe GC (2011) Erythropoietin protects against apoptosis and increases expression of non-neuronal cell markers in the hypoxia-injured developing brain. J Pathol 224:101–109. doi:10.1002/path.2862

    Article  CAS  PubMed  Google Scholar 

  188. Yang Z, Levison S (2006) Hypoxia/ischemia expands the regenerative capacity of progenitors in the perinatal subventricular zone. Neuroscience 139:555–564

    Article  CAS  PubMed  Google Scholar 

  189. Ye F, Chen Y, Hoang T, Montgomery RL, Zhao XH, Bu H, Hu T, Taketo MM, van Es JH, Clevers H et al (2009) HDAC1 and HDAC2 regulate oligodendrocyte differentiation by disrupting the beta-catenin-TCF interaction. Nat Neurosci 12:829–838. doi:10.1038/nn.2333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Zaidi A, Bessert D, Ong J, Xu H, Barks J, Silverstein F (2004) New oligodendrocytes are generated after neonatal hypoxic-ischemic brain injury in rodents. Glia 46:380–390

    Article  PubMed  Google Scholar 

  191. Zhiheng H, Liu J, Cheung P-Y, Chen C (2009) Long-term cognitive impairment and myelination deficiency in a rat model of perinatal hypoxic-ischemia brain injury. Brain Res 1301:100–109

    Article  CAS  Google Scholar 

  192. Zhu MY, Milligan N, Keating S, Windrim R, Keunen J, Thakur V, Ohman A, Portnoy S, Sled JG, Kelly E et al (2016) The hemodynamics of late-onset intrauterine growth restriction by MRI. Am J Obstet Gynecol. doi:10.1016/j.ajog.2015.10.004

    PubMed Central  Google Scholar 

Download references

Acknowledgements

Dr. Back is supported by the NIH (National Institutes of Neurological Disorders and Stroke: 1RO1NS054044, R37NS045737; National Institute on Aging: 1R01AG031892-01) and the American Heart Association (17GRNT33370058).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen A. Back.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Back, S.A. White matter injury in the preterm infant: pathology and mechanisms. Acta Neuropathol 134, 331–349 (2017). https://doi.org/10.1007/s00401-017-1718-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-017-1718-6

Keywords

Navigation