Skip to main content

Advertisement

Log in

High total cerebral blood flow is associated with a decrease of white matter lesions

  • ORIGINAL COMMUNICATION
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Background

Low cerebral blood flow (CBF) has been associated with the presence of white matter lesions (WMLs). However, the power of these studies was insufficient (n=20–35) to determine whether flow is associated with WMLs.

Purpose

The aim of this study was to investigate whether total cerebral blood flow (tCBF) is associated with the severity of white matter lesions (WMLs) in a large patient sample.

Subjects and methods

228 patients with clinical symptoms of cardiovascular disease had MRI of the brain, consisting of a T2-w FLAIR and a 2D phase-contrast flow measurement of the internal carotid arteries and the basilar artery. WMLs were graded according to prevalence and size of deep and periventricular WMLs. To determine the relation between tCBF and WMLs we used linear and logistic regression analysis adjusted for age, gender, intima media thickness and hypertension.

Results

We observed an inverse association between the tCBF and the total number of WMLs adjusted for age, gender, intima media thickness and hypertension [B=–1, 0 WML 95% CI (–2.0 to 0.0, p=0.045) per 100 mL increase in tCBF]. The adjusted odds ratio for the presence of severe WMLs in patients with high tCBF (> 675 mL/min) was 0.5 (95 % CI 0.2–1.0) compared with patients with normal tCBF.

Conclusion

In this study we found that high tCBF is associated with a decrease in presence and severity of WMLs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bakker CJG, Hartkamp MJ, Mali WPTM (1996) Measuring blood flow by nontriggered 2D phase contrast MR angiography. Magn Reson Imaging 14:609–614

    Google Scholar 

  2. Bakker CJG, Kouwenhoven M, Hartkamp MJ, Hoogeveen RM, Mali WPTM (1995) Accuracy and precision of time-averaged flow as measured by non-triggered 2D phase-contrast MR angiography: a phantom evaluation. Magn Reson Imaging 13:959–965

    Google Scholar 

  3. Bakker SL, de Leeuw FE, de Groot JC, Hofman A, Koudstaal PJ, Breteler MM (1999) Cerebral vasomotor reactivity and cerebral white matter lesions in the elderly. Neurology 52:578–583

    Google Scholar 

  4. Benson RR, Guttmann CR, Wei X, Warfield SK, Hall C, Schmidt JA, Kikinis R, Wolfson LI (2002) Older people with impaired mobility have specific loci of periventricular abnormality on MRI. Neurology 58:48–55

    Google Scholar 

  5. Bisschops RH, Kappelle LJ, Mali WP, van der GJ (2002) Hemodynamic and metabolic changes in transient ischemic attack patients: a magnetic resonance angiography and (1)H-magnetic resonance spectroscopy study performed within 3 days of onset of a transient ischemic attack. Stroke 33:110–115

    Google Scholar 

  6. Bots ML, van Swieten JC, Breteler MM, de Jong PT, van Gijn J, Hofman A, Grobbee DE (1993) Cerebral white matter lesions and atherosclerosis in the Rotterdam Study. Lancet 341:1232–1237

    Google Scholar 

  7. Briley DP, Haroon S, Sergent SM, Thomas S (2000) Does leukoaraiosis predict morbidity and mortality? Neurology 54:90–94

    Google Scholar 

  8. Buijs PC, Krabbe-Hartkamp MJ, Bakker CJG, De Lange EE, Ramos LMP, Breteler MMB, Mali WPTM (1998) Effect of age on cerebral bloodflow: measurement with ungated two-dimensional phase-contrast MR angiography in 250 adults. Radiology 209:667–674

    Google Scholar 

  9. de Groot JC, de Leeuw FE, Oudkerk M, Hofman A, Jolles J, Breteler MM (2000) Cerebral white matter lesions and depressive symptoms in elderly adults. Arch Gen Psychiatry 57:1071–1076

    Google Scholar 

  10. de Groot JC, de Leeuw FE, Oudkerk M, van Gijn J, Hofman A, Jolles J, Breteler MM (2000) Cerebral white matter lesions and cognitive function: the Rotterdam Scan Study. Ann Neurol 47:145–151

    Google Scholar 

  11. de Leeuw FE, de Groot JC, Achten E, Oudkerk M, Ramos LM, Heijboer R, Hofman A, Jolles J, van Gijn J, Breteler MM (2001) Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study. The Rotterdam Scan Study. J Neurol Neurosurg Psychiatry 70:9–14

    Google Scholar 

  12. de Leeuw FE, de Groot JC, Oudkerk M, Witteman JC, Hofman A, van Gijn J, Breteler MM (1999) A follow-up study of blood pressure and cerebral white matter lesions. Ann Neurol 46:827–833

    Google Scholar 

  13. Elgersma OEH, van Leersum M, Buijs PC, van Leeuwen MS, van de Schouw YT, Eikelboom BC, van der Graaf Y (1998) Changes over time in optimal duplex threshold for the identification of patients eligible for carotid endarterectomy. Stroke 29:2352–2356

    Google Scholar 

  14. Hatazawa J, Shimosegawa E, Satoh T, Toyoshima H, Okudera T (1997) Subcortical hypoperfusion associated with asymptomatic white matter lesions on magnetic resonance imaging. Stroke 28:1944–1947

    Google Scholar 

  15. Herholz K, Heindel W, Rackl A, Neubauer I, Steinbrich W, Pietrzyk U, Erasmi-Korber H, Heiss WD (1990) Regional cerebral blood flow in patients with leuko-araiosis and atherosclerotic carotid artery disease. Arch Neurol 47:392–396

    Google Scholar 

  16. Isaka Y, Nagano K, Narita M, Ashida K, Imaizumi M (1997) High signal intensity on T2-weighted magnetic resonance imaging and cerebral hemodynamic reserve in carotid occlusive disease. Stroke 28:354–357

    CAS  PubMed  Google Scholar 

  17. Isaka Y, Okamoto M, Ashida K, Imaizumi M (1994) Decreased cerebrovascular dilatory capacity in subjects with asymptomatic periventricular hyperintensities. Stroke 25:375–381

    Google Scholar 

  18. Kawamura J, Meyer JS, Terayama Y, Weathers S (1991) Leukoaraiosis correlates with cerebral hypoperfusion in vascular dementia. Stroke 22:609–614

    Google Scholar 

  19. Longstreth WT Jr, Manolio TA, Arnold A, Burke GL, Bryan N, Jungreis CA, Enright PL, O’Leary D, Fried L (1996) Clinical correlates of white matter findings on cranial magnetic resonance imaging of 3301 elderly people. The Cardiovascular Health Study. Stroke 27:1274–1282

    Google Scholar 

  20. Markus HS, Lythgoe DJ, Ostegaard L, O’Sullivan M, Williams SC (2000) Reduced cerebral blood flow in white matter in ischaemic leukoaraiosis demonstrated using quantitative exogenous contrast based perfusion MRI. J Neurol Neurosurg Psychiatry 69:48–53

    Google Scholar 

  21. Marstrand JR, Garde E, Rostrup E, Ring P, Rosenbaum S, Mortensen EL, Larsson HB (2002) Cerebral perfusion and cerebrovascular reactivity are reduced in white matter hyperintensities. Stroke 33:972–976

    Google Scholar 

  22. Meguro K, Hatazawa J, Yamaguchi T, Itoh M, Matsuzawa T, Ono S, Miyazawa H, Hishinuma T, Yanai K, Sekita Y (1990) Cerebral circulation and oxygen metabolism associated with subclinical periventricular hyperintensity as shown by magnetic resonance imaging. Ann Neurol 28:378–383

    Google Scholar 

  23. O’Sullivan M, Lythgoe DJ, Pereira AC, Summers PE, Jarosz JM, Williams SC, Markus HS (2002) Patterns of cerebral blood flow reduction in patients with ischemic leukoaraiosis. Neurology 59:321–326

    Google Scholar 

  24. Rutgers DR, Blankensteijn JD, Van der Grond J (2000) Preoperative MRA flow quantification in CEA patients: flow differences between patients who develop cerebral ischemia and patients who do not develop cerebral ischemia during cross-clamping of the carotid artery. Stroke 31:3021–3028

    CAS  PubMed  Google Scholar 

  25. Simons PC, Algra A, van de Laak MF, Grobbee DE, van der GY (1999) Second manifestations of ARTerial disease (SMART) study: rationale and design. Eur J Epidemiol 15:773–781

    Google Scholar 

  26. Spilt A, Box FM, Van Der Geest RJ, Reiber JH, Kunz P, Kamper AM, Blauw GJ, van Buchem MA (2002) Reproducibility of total cerebral blood flow measurements using phase contrast magnetic resonance imaging. J Magn Reson Imaging 16:1–5

    Google Scholar 

  27. Tzourio C, Levy C, Dufouil C, Touboul PJ, Ducimetiere P, Alperovitch A (2001) Low cerebral blood flow velocity and risk of white matter hyperintensities. Ann Neurol 49:411–414

    Google Scholar 

  28. van der ZA, Tulleken CA, Hillen B (2001) Flow quantification of the nonocclusive excimer laser-assisted EC-IC bypass. Acta Neurochir (Wien) 143:647–654

    Google Scholar 

  29. Waldemar G, Christiansen P, Larsson HB, Hogh P, Laursen H, Lassen NA, Paulson OB (1994) White matter magnetic resonance hyperintensities in dementia of the Alzheimer type: morphological and regional cerebral blood flow correlates. J Neurol Neurosurg Psychiatry 57:1458–1465

    Google Scholar 

  30. Yamauchi H, Fukuyama H, Nagahama Y, Shiozaki T, Nishizawa S, Konishi J, Shio H, Kimura J (1999) Brain arteriolosclerosis and hemodynamic disturbance may induce leukoaraiosis. Neurology 53:1833–1838

    Google Scholar 

  31. Yamauchi H, Fukuyama H, Yamaguchi S, Kimura J, Konishi J (1991) High-intensity area in the deep white matter indicating hemodynamic compromise in internal carotid artery occlusive disorders. Arch Neurol 48:1067–1071

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. van der Grond.

Additional information

for the SMART study group

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bisschops, R.H.C., van der Graaf, Y., Mali, W.P.T.M. et al. High total cerebral blood flow is associated with a decrease of white matter lesions. J Neurol 251, 1481–1485 (2004). https://doi.org/10.1007/s00415-004-0569-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-004-0569-y

Key words

Navigation