Skip to main content

Advertisement

Log in

Cognitive function in bulbar– and spinal–onset amyotrophic lateral sclerosis

A longitudinal study in 52 patients

  • ORIGINAL COMMUNICATION
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

We performed a longitudinal study of frontal and temporal lobe functions in patients with amyotrophic lateral sclerosis (ALS) and compared the evolution of cognitive performance with that of motor deficits in patients with spinal and bulbar–onset of the disease. Fifty two patients suffering from sporadic ALS according to the El Escorial criteria were examined; 37 patients had a spinal, 15 a bulbar onset of the disease. The data profile included examinations at entry (E1), every four months at follow–up (E2, E3, E4) and after 18 months (E5), if possible. Neuropsychological testing covered the domains of executive functions, memory and attentional control. ALS patients showed executive dysfunctions that were most prominently represented by deficits of non–verbal and verbal fluency and concept formation. Memory–related deficits were also present but less expressed. The same held true for phasic and tonic alertness and divided attention. In contrast to motor functions declining concomitantly with disease progression, cognitive deficits appeared in early disease, were essentially present at initial testing and did not substantially decline on follow–up. A subgroup analysis revealed that bulbar–onset ALS patients performed consistently poorer in many cognitive tests than spinalonset ones with special reference to verbal and non–verbal fluency and interference control. This subgroup difference persisted or even increased throughout follow–up. We conclude that there is a fronto–temporal pattern of cognitive dysfunction in ALS expressing itself early in the course of the disease and mainly with bulbar forms. The cognitive deficits do not progress in synchrony with motor decline, but distinctly more slowly. We suggest that cognitive dysfunctions reflect functional and possibly morphological deficits outside the primary motor system that is specific for the nature and evolution of the disease and might also give clues to etiopathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abrahams S, Goldstein LH, Lloyd CM, Brooks DJ, Leigh PN (1995a) Cognitive deficits in non-demented amyotrophic lateral sclerosis patients: a neuropsychological investigation. J Neurol Sci 129(Suppl):54–55

    Google Scholar 

  2. Abrahams S, Leigh PN, Kew JJ, Goldstein LH, Lloyd CM, Brooks DJ (1995b) A positron emission tomography study of frontal lobe function (verbal fluency) in amyotrophic lateral sclerosis. J Neurol Sci 129(Suppl):44–46

    Google Scholar 

  3. Abrahams S, Goldstein LH, Kew JJM, Brooks DJ, Lloyd CM, Frith CD, Leigh PN (1996) Frontal lobe dysfunction in amyotrophic lateral sclerosis. A PET study. Brain 119(6):2105–2120

    PubMed  Google Scholar 

  4. Abrahams S, Goldstein LH, Al-Chalabi A, Pickering A, Morris RG, Passingham RE, Brooks DJ, Leigh PN (1997) Relation between cognitive dysfunction and pseudobulbar palsy in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 62:464–472

    CAS  PubMed  Google Scholar 

  5. Abrahams S, Leigh PN, Harvey A, Vythelingum GN, Grise D, Goldstein LH (2000) Verbal fluency and executive dysfunction in amyotrophic lateral sclerosis (ALS). Neuropsychologia 38:734–747

    CAS  PubMed  Google Scholar 

  6. Andreadou E, Sgouropoulos P, Varelas P, Gouliamos A, Papageorgiou C (1998) Subcortical frontal lesions on MRI in patients with motor neurone disease. Neuroradiology 40:298–302

    CAS  PubMed  Google Scholar 

  7. Bäumler G (1984) Farbe-Wort-Interferenztest (FWIT) nach JR Stroop. Verlag für Psychologie – Dr.C. J. Hogrefe, Göttingen, Toronto, Zürich

  8. Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh J (1961) An inventory for measuring depression. Arch Gen Psychiatry 4:561–571

    CAS  PubMed  Google Scholar 

  9. Benton AL, Hamsher K, de Varney S, Spreen NR (1983) Contributions to neuropsychological assessment. New York, Oxford University Press

  10. Brooks BR (1994a) El Escorial World Federation of Neurology. Criteria for the diagnosis of amyotrophic lateral sclerosis. J Neurol Sci 124(Suppl):96–107

    Google Scholar 

  11. Dary-Auriol M, Ingrand P, Bonnaud V, Dumas P, Gil R (1997) Cognitive impairment and amyotrophic lateral sclerosis. Rev Neurol (Paris) 153(4):244–250

    CAS  PubMed  Google Scholar 

  12. David AS, Gillham RA (1986) Neuropsychological study of motor neuron disease. Psychosomatics 27:441–445

    CAS  PubMed  Google Scholar 

  13. des Rosiers G, Kavanagh D (1987) Cognitive assessment in closed head injury: stability, validity and parallel forms for two neuropsychological measures of recovery. Int J Clin Neuropsychol 9:162–173

    Google Scholar 

  14. Dickinson-Gibbons J (1985) Nonparametric statistical Inference. 2nd Edition. Marcel Dekker Inc., New York

  15. Evdokimidis I, Constantinidis TS, Gourtzelidis P, Smyrnis N, Zalonis I, Zis PV, Andreadou E, Papageorgiou C (2002) Frontal lobe dysfunction in amyotrophic lateral sclerosis. J Neurol Sci 195:25–33

    CAS  PubMed  Google Scholar 

  16. Frank B, Haas J, Heinze H-J, Stark E, Münte TF (1997) Relation of neuropsychological and magnetic resonance findings in amyotrophic lateral sclerosis: evidence for subgroups. Clin Neurol Neurosurg 99:79–86

    CAS  PubMed  Google Scholar 

  17. Gallassi R, Montagna P, Morreale A, Lorusso S, Tinuper P, Daidone R, Lugaresi E (1989) Neuropsychological, electroencephalogram and brain computed tomography findings in motor neuron disease. Eur Neurol 29:115–120

    CAS  PubMed  Google Scholar 

  18. Goldman-Rakic PS (1987) The issue of memory in the study of prefrontal function. In: Thierry AM, Glowinsky J, Goldman-Rakic PS, Christen Y (eds) Motor and cognitive functions of the prefrontal cortex. Springer, Berlin, Heidelberg, New York

  19. Grant D, Berg EA (1948) A behavioral analysis of degree of reinforcement and ease of shifting to new responses in a Weigl-type card-sorting problem. J Exp Psychol 38:404–411

    Google Scholar 

  20. Hautzinger M, Bailer M, Worall H, Keller F (1995) Beck-Depressions- Inventar (BDI). Testhandbuch. 2. Auflage. Verlag Hans Huber, Bern, Göttingen, Toronto, Seattle

  21. Brooks BR (1994b) The ALS Norris score: insight into the natural history of ALS provided by Forbes Norris. In: Rose FC (ed) The Forbes H Norris Memorial Volume. ALS: from Charcot to the present and into the future. London, Smith-Gordon

  22. Heaten RK, Grant I, Matthews CG (1991) Comprehensive norms for an expanded Halstead-Reitan battery: demographic corrections. Research findings, and clinical applications. Odessa, FL: Psychological Assessment Resources

  23. Hudson AJ (1981) Amyotrophic lateral sclerosis and its association with dementia, parkinsonism and other neurological disorders: a review. Brain 104:217–247

    CAS  PubMed  Google Scholar 

  24. Iwasaki Y, Kinoshita M, Ikeda K, Takamiya K, Shiojima T (1990) Cognitive impairment in amyotrophic lateral sclerosis and its relation to motor disabilities. Acta Neurol Scand 81:141–143

    CAS  PubMed  Google Scholar 

  25. Kato S, Hayashi H, Yagishita A (1993) Involvement of the frontotemporal lobe and limbic system in amyotrophic lateral sclerosis: as assessed by serial computed tomography and magnetic resonance imaging. J Neurol Sci 116:52–58

    CAS  PubMed  Google Scholar 

  26. Kato S, Masaya O, Hayashi H, Kawata A, Shimizu T (1994) Participation of the limbic system and its associated areas in the dementia of amyotrophic lateral sclerosis. J Neurol Sci 126:62–69

    CAS  PubMed  Google Scholar 

  27. Kawamura Y, Dyck PJ, Shimono M, et al. (1981) Morphometric comparison of the vulnerability of peripheral motor and sensory neurons in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 40:667–675

    CAS  PubMed  Google Scholar 

  28. Kew JJM,Goldstein LH, Leigh PN, Abrahams S, Cosgrave N, Passingham RE, Frackowiak RSJ, Brooks DJ (1993) The relationship between abnormalities of cognitive function and cerebral activation in amyotrophic lateral sclerosis. Brain 116:1399–1423

    PubMed  Google Scholar 

  29. Kiernan JA, Hudson AJ (1994) Frontal lobe atrophy in motor neuron diseases. Brain 117:747–757

    PubMed  Google Scholar 

  30. Kimura SD (1981) A card from of the Reitan-Modified Halstead Category Test. J Consult Clin Psychol 49:145–146

    Google Scholar 

  31. Lehrl S (1989) Mehrfachwahl- Wortschatz-Intelligenztest MWT-B. Manual, 2. Neubearb. Auflage. Perimed Fachbuch-Verlagsgesellschaft, Erlangen

  32. Ludolph AC, Langen KJ, Regard M, Herzog H, Kemper B, Kuwert T, Böttger IG, Feinendegen L (1992) Frontal lobe function in amyotrophic lateral sclerosis: a neuropsychologic and positron emission tomography study. Acta Neurol Scand 85:81–89

    CAS  PubMed  Google Scholar 

  33. Massman PJ, Sims J, Cooke N, Haverkamp LJ, Appel V, Appel SH (1996) Prevalence and correlates of neuropsychological deficits in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 61:450–455

    CAS  PubMed  Google Scholar 

  34. Milner B (1963) Effects of different brain lesions on card sorting. The role of the frontal lobes. Arch Neurol 9:90–100

    Google Scholar 

  35. Mitsuyama Y (1984) Presenile dementia with motor neuron disease in Japan: Clinico-pathological review of 26 cases. J Neurol Neurosurg Psychiatry 47:953–959

    CAS  PubMed  Google Scholar 

  36. Morrison BM, Janssen WG, Gordon JW, Morrison JH (1998) Time course of neuropathology in the spinal cord of G86R superoxide dismutase transgenic mice. J Comp Neurol 391:64–77

    CAS  PubMed  Google Scholar 

  37. Münte TF, Troger M, Nusser I, Wieringa BM, Matzke M, Johannes S, Dengler R (1998) Recognition memory deficits in amyotrophic lateral sclerosis assessed with event-related brain potentials. Acta Neurol Scand 98:110–115

    PubMed  Google Scholar 

  38. Neary D, Snowden JS, Mann DM (2000) Cognitive change in motor neurone disease/amyotrophic lateral sclerosis. J Neurol Sci 180:15–20

    CAS  PubMed  Google Scholar 

  39. Okamoto K (1998) Temporal lobe pathology in patients with amyotrophic lateral sclerosis. Neuropathology 18(2):222–227

    Google Scholar 

  40. Petrides M (1989) Frontal lobes and memory. In: Boller F, Frafman J (eds) Handbook of Neuropsychology,Vol 3. Elsevier, pp 75–90

  41. Portet F, Cadilhac C, Touchon J, Camu W (2001) Cognitive impairment in motor neuron disease with bulbar onset. Amyotroph Lateral Scler Other Motor Neuron Disord 2:23–29

    CAS  PubMed  Google Scholar 

  42. Regard M, Strauss E, Knapp P (1982) Children’s production on verbal and non-verbal fluency tasks. Perc mot skills 55:839–844

    CAS  Google Scholar 

  43. Rey A (1964) L’examen clinique en psychologie. Presses universitaires de France, Paris

  44. Sachs L (2002) Angewandte Statistik, 10. Auflage, Springer Verlag, Berlin

  45. Strong MJ, Grace GM, Orange JB, Leeper HA, Menon RS, Aere C (1999) A prospective study of cognitive impairment in ALS. Neurology 53:1665–1670

    CAS  PubMed  Google Scholar 

  46. Stroop JR (1935) Studies of interference in serial verbal reactions. J Exp Psychol 18:643–681

    Google Scholar 

  47. Sturm W, Willmes K,Horn W (1993) Leistungsprüfungssystem für 50–90jährige.Handanweisung, 2.Auflage, Hogrefe, Verlag für Psychologie, Göttingen

  48. Thurstone LL, Thurstone TG (1962) Primary mental abilities (Rev). Chicago: Science Research Associates

  49. Vercelletto M, Ronin M, Huvet M, Magne C, Feve JR (1999) Frontal type dementia preceding amyotrophic lateral sclerosis: a neuropsychological and SPECT study of five clinical cases. Eur J Neurol 6:295–299

    CAS  PubMed  Google Scholar 

  50. Wechsler D (1981) Wechsler Adult Intelligence Scale- revised version (WAIS-R). Psychological corporation, New York

  51. Wightman G, Anderson VER, Martin J, Swash M, Anderton BH, Neary D, Mann D, Luthert P, Leigh PN (1992) Hippocampal and neocortical ubiquitin- immunoreactive inclusions in amyotrophic lateral sclerosis with dementia. Neuroscience Lett 139:269–274

    CAS  Google Scholar 

  52. Wilson CM, Grace GM, Munoz DG, He BP, Strong MJ (2001) Cognitive impairment in sporadic ALS: a pathologic continuum underlying a multisystem disorder. Neurology 57:651–657

    CAS  PubMed  Google Scholar 

  53. Zimmermann P, Fimm B (1993) Testbatterie zur Aufmerksamkeitsprüfung (TAP) – Version 1.0. Handbuch Teil 1. Psytest

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Christian Ludolph.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schreiber, H., Gaigalat, T., Wiedemuth-Catrinescu, U. et al. Cognitive function in bulbar– and spinal–onset amyotrophic lateral sclerosis. J Neurol 252, 772–781 (2005). https://doi.org/10.1007/s00415-005-0739-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-005-0739-6

Key words

Navigation