Skip to main content
Log in

JNCL patients show marked brain volume alterations on longitudinal MRI in adolescence

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Abstract

Juvenile neuronal ceroid lipofuscinosis (JNCL, CLN3) is an inherited lysosomal disease. We used longitudinal MRI, for the first time, to evaluate the rate of brain volume alterations in JNCL.

Six patients (mean ages of 12.4 years and 17.3 years) and 12 healthy controls were studied twice with 1.5 T MRI. White matter (WM), gray matter (GM) and CSF volumes were measured from the sets of T1-weighted 3-dimensional MR images using a fully automated image-processing procedure. The brain volume alterations were calculated as percentage change per year. The GM and whole brain volumes decreased and the CSF volume increased significantly more in the patients than in controls (p-values for the null hypothesis of equal means were 0.001, 0.004, and 0.005, respectively). We found no difference in the WM volume change between the populations. In patients, the GM volume decreased 2.4 % (SD 0.5 %, p 0.0001 for the null hypothesis of zero mean change between observations), the whole brain volume decreased 1.1 % (SD 0.5 %, p = 0.003), and the CSF volume increased 2.7 % (SD 1.8 %, p = 0.01) per year. In normal controls, only the mean white matter volume was significantly altered (0.8 % increase, SD 0.7 %, and p = 0.001).

Conclusion

We demonstrated by longitudinal MRI that the annual rate of the gray matter loss in adolescent JNCL patients is as high as 2.4 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Autti T, Raininko R, Vanhanen S-L, Santavuori P (1996) MRI of neuronal ceroid lipofuscinosis I. Cranial MRI of 30 patients with juvenile neuronal ceroid lipofuscinosis. Neuroradiology 38:476–482

    Article  PubMed  CAS  Google Scholar 

  2. Autti T, Raininko R, Santavuori P, Vanhanen SL, Poutanen VP, Haltia M (1997) MRI of neuronal ceroid lipofuscinosis. II. Postmortem MRI and histopathological study of the brain in 16 cases of neuronal ceroid lipofuscinosis of juvenile or late infantile type. Neuroradiology 39:371–377

    Article  PubMed  CAS  Google Scholar 

  3. Claussen M, Heim P, Knispel J, Goebel HH, Kohlschutter A (1992) Incidence of neuronal ceroid-lipofuscinoses in West Germany: variation of a method for studying autosomal recessive disorders. Am J Med Genet 42:536–538

    Article  PubMed  CAS  Google Scholar 

  4. Cooper JD, Russell C, Mitchinson H (2006) Progress towards understanding disease mechanisms in small vertebrate models of neuronal ceroid lipofuscinosis. Biochim Biophys Acta 1762:873–889

    PubMed  CAS  Google Scholar 

  5. Giedd JN, Blumenthal J, Jeffries NO, Castellanos FX, Liu H, Zijdenbos A, Paus T, Evans AC, Rapoport JL (1999) Brain development during childhood and adolescence: a longitunidal MRI study. Nat Neurosci 2:861–863

    Article  PubMed  CAS  Google Scholar 

  6. Giedd JN, Clasen LS, Lenroot R, Greenstein D, Wallace G, Ordaz S, Molloy A, Blumenthal J, Tossel J, Stayer C, Samago-Sprouse C, Shen D, Davatzikos C, Merke D, Chrousos G (2006) Pubertyrelated influenced on brain development. Moll Cell Endocrinol 254–255:144–162

    Google Scholar 

  7. Greene NDE, Lythgoe MF, Thomas DL, Nussbaum RL, Bernard DJ, Mitchison HM (2001) High resolution MRI reveals changes in brains of Cln3 mutant mice. J Paediatr Neurol 5 (Suppl A):103–107

    Article  Google Scholar 

  8. Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS (2001) A voxel-based morphometric study of aging in 465 normal adult human brains. NeuroImage 14:21–36

    Article  PubMed  CAS  Google Scholar 

  9. Haapanen A, Ramadan U, Autti T, Joensuu R, Tyynelä J (2007) In vivo MRI reveals dynamics of pathological changes in the brains of cathepsin Ddeficient mice and correlates changes in manganase-enhanced MRI with microglial activation. Magn Reson Imaging 25:1024–1031

    Article  PubMed  CAS  Google Scholar 

  10. Haltia M (2006)The neuronal ceroidlipofuscinoses: from past to present. Biochim Biophys Acta 1762(10):850–856

    PubMed  CAS  Google Scholar 

  11. Järvelä I, Autti T, Santavuori P, Raininko R, Åberg L, Peltonen L (1997) Clinical and MRI findings in Batten disease – analysis of the major mutation. Ann Neurol 42:799–802

    Article  PubMed  Google Scholar 

  12. Lenroot R, Gogtay N, Greenstein D, Wells E, Wallace G, Clasen L, Blumenthal J, Lerch J, Zijdenbos A, Evans A, Thompson P, Giedd J (2007) Sexual dimorphism of brain developmental trajectories during childhood and adolescence. Neuroimage 36:1065–1073

    Article  PubMed  Google Scholar 

  13. Mole SE (2004) The genetic spectrum of human neuronal ceroid-lipofuscinoses. Brain Pathol 14:70–76

    PubMed  CAS  Google Scholar 

  14. Paus T, Collins DL, Evans AC, Leonard G, Pike B, Zijdentos A (1999) Maturation of the white matter in the human brain: a review of magnetic resonance studies. Brain Res Bull 54:255–266

    Article  Google Scholar 

  15. Phillips SN, Benedict JW, Weimer JM, Pearce DA . (2005) CLN3, the protein associated with Batten disease: structure, function and localization. J Neurosci Res 79:573–583

    Article  PubMed  CAS  Google Scholar 

  16. Purves D (1980) A trophic theory of neural connections. In: Body and Brain Cambridge,MA: Harvard University Press

  17. Santavuori P, Lauronen L, Kirveskari E, Åberg L, Sainio K, Autti T (2000) Neuronal ceroid lipofuscinoses in childhood. Neurol Sci 21:S35–S41

    Article  PubMed  CAS  Google Scholar 

  18. Santavuori P, Vanhanen S-L, Autti T (2001) Clinical and neuroradiological diagnostic aspects of neuronal ceroid lipofuscinoses disorders. Eur J Paediatr Neurol 5 (Suppl A):157–161

    Article  PubMed  Google Scholar 

  19. Sowell ER, Thompson PM, Holmes CJ, Batth R, Jernigan TL, Toga AW (1999) Localized age-related changes in brain structure between childhood and adolescence using statistical parametric mapping. NeuroImage 9:587–597

    Article  PubMed  CAS  Google Scholar 

  20. Thompson. P, Hayashi K, Zubicaray G, Janke A, Rose S, Semple J, Herman D, Hong M, Dittmer S, Doddrell D, Toga A (2003) Dynamics of gray matter loss in Alzheimer`s disease. J Neurosci 23:994–1005

    PubMed  CAS  Google Scholar 

  21. Wilke M, Krägeloh-Mann I, Holland S (2007) Global and local development of gray and white matter volume in normal children and adolescents. Exp Brain Res 178:296–307

    Article  PubMed  Google Scholar 

  22. Åberg L, Liewendahl K, Nikkinen P, Autti T, Rinne JO, Santavuori P (2000) Decreased striatal dopamine transporter density in JNCL patients with parkinsonian symptoms. Neurology 54:1069–1074

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. H. Autti PhD, MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Autti, T.H., Hämäläinen, J., Mannerkoski, M. et al. JNCL patients show marked brain volume alterations on longitudinal MRI in adolescence. J Neurol 255, 1226–1230 (2008). https://doi.org/10.1007/s00415-008-0891-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-008-0891-x

Key words

Navigation