Skip to main content
Log in

Cerebral cortical areas in which thickness correlates with severity of motor deficits of Parkinson’s disease

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

The pathology of Parkinson’s disease (PD) is not confined to the nigrostriatal dopaminergic pathway, but also involves widespread cerebral cortical areas. Such non-nigrostriatal lesions may contribute to disabling dopa-resistant parkinsonian motor deficits. We performed cortical thickness analysis to identify cerebral cortical brain areas in which thickness correlates with the severity of parkinsonian motor deficits. We performed T1-weighted brain magnetic resonance imaging studies in 142 PD patients. Motor scores on the Unified Parkinson’s Disease Rating Scale (UPDRS) were measured, and subscores were calculated for bradykinesia, rigidity, tremor, and axial motor deficits. Using FreeSurfer software, we studied cortical areas in which thickness correlates with disease duration or the severity of parkinsonian motor deficits. The cortical thickness of the parieto-temporal association cortex, including the inferior parietal and posterior parietal cortices, showed a negative correlation with disease duration, total UPDRS motor score, and UPDRS subscores for bradykinesia and axial motor deficits. We found no cortical areas in which thickness correlated with subscores for tremor and rigidity. In addition to nigrostriatal dopaminergic deficit, progressive thinning of the parieto-temporal sensory association cortices related to disease duration seems to be related in part to the exacerbation of bradykinesia and the axial motor symptoms of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211

    Article  PubMed  Google Scholar 

  2. Abe Y, Kachi T, Kato T, Arahata Y, Yamada T, Washimi Y, Iwai K, Ito K, Yanagisawa N, Sobue G (2003) Occipital hypoperfusion in Parkinson’s disease without dementia: correlation to impaired cortical visual processing. J Neurol Neurosurg Psychiatry 74:419–422

    Article  PubMed  CAS  Google Scholar 

  3. Bohnen NI, Minoshima S, Giordani B, Frey KA, Kuhl DE (1999) Motor correlates of occipital glucose hypometabolism in Parkinson’s disease without dementia. Neurology 52:541–546

    PubMed  CAS  Google Scholar 

  4. Hu MT, Taylor-Robinson SD, Chaudhuri KR, Bell JD, Labbe C, Cunningham VJ, Koepp MJ, Hammers A, Morris RG, Turjanski N, Brooks DJ (2000) Cortical dysfunction in non-demented Parkinson’s disease patients: a combined 31P-MRS and 18FDG-PET study. Brain 123:340–352

    Article  PubMed  Google Scholar 

  5. Lyoo CH, Ryu YH, Lee MS (2010) Topographical distribution of cerebral cortical thinning in patients with mild Parkinson’s disease without dementia. Mov Disord 25:496–499

    Article  PubMed  Google Scholar 

  6. Mink JW (1996) The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol 50:381–425

    Article  PubMed  CAS  Google Scholar 

  7. Greffard S, Verny M, Bonnet AM, Beinis JY, Gallinari C, Meaume S, Piette F, Hauw JJ, Duyckaerts C (2006) Motor score of the unified Parkinson disease rating scale as a good predictor of Lewy body-associated neuronal loss in the substantia nigra. Arch Neurol 63:584–588

    Article  PubMed  Google Scholar 

  8. Apaydin H, Ahlskog JE, Parisi JE, Boeve BF, Dickson DW (2002) Parkinson disease neuropathology: later-developing dementia and loss of the levodopa response. Arch Neurol 59:102–112

    Article  PubMed  Google Scholar 

  9. Braak H, Rub U, Jansen Steur EN, Del Tredici K, de Vos RA (2005) Cognitive status correlates with neuropathologic stage in Parkinson disease. Neurology 64:1404–1410

    Article  PubMed  CAS  Google Scholar 

  10. Agid Y, Graybiel AM, Ruberg M, Hirsch E, Blin J, Dubois B, Javoy-Agid F (1990) The efficacy of levodopa treatment declines in the course of Parkinson’s disease: do nondopaminergic lesions play a role? Adv Neurol 53:83–100

    PubMed  CAS  Google Scholar 

  11. Bonnet AM, Loria Y, Saint-Hilaire MH, Lhermitte F, Agid Y (1987) Does long-term aggravation of Parkinson’s disease result from nondopaminergic lesions? Neurology 37:1539–1542

    PubMed  CAS  Google Scholar 

  12. Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55:181–184

    Article  PubMed  CAS  Google Scholar 

  13. Vingerhoets FJ, Villemure JG, Temperli P, Pollo C, Pralong E, Ghika J (2002) Subthalamic DBS replaces levodopa in Parkinson’s disease: two-year follow-up. Neurology 58:396–401

    PubMed  Google Scholar 

  14. Levy G, Tang MX, Cote LJ, Louis ED, Alfaro B, Mejia H, Stern Y, Marder K (2000) Motor impairment in PD: relationship to incident dementia and age. Neurology 55:539–544

    PubMed  CAS  Google Scholar 

  15. Abbruzzese G, Berardelli A (2003) Sensorimotor integration in movement disorders. Mov Disord 18:231–240

    Article  PubMed  Google Scholar 

  16. Zia S, Cody F, O’Boyle D (2000) Joint position sense is impaired by Parkinson’s disease. Ann Neurol 47:218–228

    Article  PubMed  CAS  Google Scholar 

  17. Rickards C, Cody FW (1997) Proprioceptive control of wrist movements in Parkinson’s disease. Reduced muscle vibration-induced errors. Brain 120:977–990

    Article  PubMed  Google Scholar 

  18. Schneider JS, Diamond SG, Markham CH (1986) Deficits in orofacial sensorimotor function in Parkinson’s disease. Ann Neurol 19:275–282

    Article  PubMed  CAS  Google Scholar 

  19. Artieda J, Pastor MA, Lacruz F, Obeso JA (1992) Temporal discrimination is abnormal in Parkinson’s disease. Brain 115:199–210

    Article  PubMed  Google Scholar 

  20. Klockgether T, Borutta M, Rapp H, Spieker S, Dichgans J (1995) A defect of kinesthesia in Parkinson’s disease. Mov Disord 10:460–465

    Article  PubMed  CAS  Google Scholar 

  21. Berardelli A, Dick JP, Rothwell JC, Day BL, Marsden CD (1986) Scaling of the size of the first agonist EMG burst during rapid wrist movements in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry 49:1273–1279

    Article  PubMed  CAS  Google Scholar 

  22. Demirci M, Grill S, McShane L, Hallett M (1997) A mismatch between kinesthetic and visual perception in Parkinson’s disease. Ann Neurol 41:781–788

    Article  PubMed  CAS  Google Scholar 

  23. Berardelli A, Rothwell JC, Thompson PD, Hallett M (2001) Pathophysiology of bradykinesia in Parkinson’s disease. Brain 124:2131–2146

    Article  PubMed  CAS  Google Scholar 

  24. Rocchi L, Chiari L, Mancini M, Carlson-Kuhta P, Gross A, Horak FB (2006) Step initiation in Parkinson’s disease: influence of initial stance conditions. Neurosci Lett 406:128–132

    Article  PubMed  CAS  Google Scholar 

  25. Lyoo CH, Aalto S, Rinne JO, Lee KO, Oh SH, Chang JW, Lee MS (2007) Different cerebral cortical areas influence the effect of subthalamic nucleus stimulation on parkinsonian motor deficits and freezing of gait. Mov Disord 22:2176–2182

    Article  PubMed  Google Scholar 

  26. Patchay S, Gahery Y (2003) Effect of asymmetrical limb loading on early postural adjustments associated with gait initiation in young healthy adults. Gait Posture 18:85–94

    Article  PubMed  Google Scholar 

  27. Burleigh-Jacobs A, Horak FB, Nutt JG, Obeso JA (1997) Step initiation in Parkinson’s disease: influence of levodopa and external sensory triggers. Mov Disord 12:206–215

    Article  PubMed  CAS  Google Scholar 

  28. Jacobs JV, Horak FB (2006) Abnormal proprioceptive-motor integration contributes to hypometric postural responses of subjects with Parkinson’s disease. Neuroscience 141:999–1009

    Article  PubMed  CAS  Google Scholar 

  29. Wright WG, Gurfinkel VS, King LA, Nutt JG, Cordo PJ, Horak FB (2010) Axial kinesthesia is impaired in Parkinson’s disease: effects of levodopa. Exp Neurol 225:202–209

    Article  PubMed  CAS  Google Scholar 

  30. Konczak J, Corcos DM, Horak F, Poizner H, Shapiro M, Tuite P, Volkmann J, Maschke M (2009) Proprioception and motor control in Parkinson’s disease. J Mot Behav 41:543–552

    Article  PubMed  Google Scholar 

  31. Lee MS, Kim HS, Lyoo CH (2005) “Off” gait freezing and temporal discrimination threshold in patients with Parkinson disease. Neurology 64:670–674

    Article  PubMed  Google Scholar 

  32. Camicioli R, Gee M, Bouchard TP, Fisher NJ, Hanstock CC, Emery DJ, Martin WR (2009) Voxel-based morphometry reveals extra-nigral atrophy patterns associated with dopamine refractory cognitive and motor impairment in parkinsonism. Parkinsonism Relat Disord 15:187–195

    Article  PubMed  Google Scholar 

  33. Fogassi L, Luppino G (2005) Motor functions of the parietal lobe. Curr Opin Neurobiol 15:626–631

    Article  PubMed  CAS  Google Scholar 

  34. Rizzolatti G, Luppino G, Matelli M (1998) The organization of the cortical motor system: new concepts. Electroencephalogr Clin Neurophysiol 106:283–296

    Article  PubMed  CAS  Google Scholar 

  35. Andersen RA, Buneo CA (2002) Intentional maps in posterior parietal cortex. Annu Rev Neurosci 25:189–220

    Article  PubMed  CAS  Google Scholar 

  36. Helmich RC, Derikx LC, Bakker M, Scheeringa R, Bloem BR, Toni I (2010) Spatial remapping of cortico-striatal connectivity in Parkinson’s disease. Cereb Cortex 20:1175–1186

    Article  PubMed  Google Scholar 

  37. Hinkley LB, Krubitzer LA, Nagarajan SS, Disbrow EA (2007) Sensorimotor integration in S2, PV, and parietal rostroventral areas of the human sylvian fissure. J Neurophysiol 97:1288–1297

    Article  PubMed  Google Scholar 

  38. Louis ED, Tang MX, Cote L, Alfaro B, Mejia H, Marder K (1999) Progression of parkinsonian signs in Parkinson disease. Arch Neurol 56:334–337

    Article  PubMed  CAS  Google Scholar 

  39. Pirker W (2003) Correlation of dopamine transporter imaging with parkinsonian motor handicap: how close is it? Mov Disord 18(Suppl 7):S43–S51

    Article  PubMed  Google Scholar 

  40. Benamer HT, Patterson J, Wyper DJ, Hadley DM, Macphee GJ, Grosset DG (2000) Correlation of Parkinson’s disease severity and duration with 123I-FP-CIT SPECT striatal uptake. Mov Disord 15:692–698

    Article  PubMed  CAS  Google Scholar 

  41. Lewis MM, Du G, Sen S, Kawaguchi A, Truong Y, Lee S, Mailman RB, Huang X (2011) Differential involvement of striato- and cerebello-thalamo-cortical pathways in tremor- and akinetic/rigid-predominant Parkinson’s disease. Neuroscience 177:230–239

    Article  PubMed  CAS  Google Scholar 

  42. Rodriguez-Oroz MC, Jahanshahi M, Krack P, Litvan I, Macias R, Bezard E, Obeso JA (2009) Initial clinical manifestations of Parkinson’s disease: features and pathophysiological mechanisms. Lancet Neurol 8:1128–1139

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a faculty research grant of Yonsei University College of Medicine (grant number 6-2010-0016).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myung Sik Lee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 554 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lyoo, C.H., Ryu, Y.H. & Lee, M.S. Cerebral cortical areas in which thickness correlates with severity of motor deficits of Parkinson’s disease. J Neurol 258, 1871–1876 (2011). https://doi.org/10.1007/s00415-011-6045-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-011-6045-6

Keywords

Navigation