Skip to main content
Log in

Functional correlates of callosal atrophy in relapsing-remitting multiple sclerosis patients. A preliminary MRI study

Journal of Neurology Aims and scope Submit manuscript

Abstract

In multiple sclerosis (MS), periventricular lesions produce atrophy of the corpus callosum (CC), as evidenced by magnetic resonance imaging (MRI). We investigated whether CC atrophy in relapsing-remitting MS patients is related to functional deficits. We compared 14 mildly disabled (mean Expanded Disability Status Scale score 2.7) relapsing-remitting MS patients with 14 age- und sexmatched controls. CC size was determined using sagittal Tl-weighted MRI. The function of the CC was studied using a neuropsychological battery and neurophysiological evaluation based on visual stimulation using a divided visual field paradigm. The total area of the CC in patients (mean 5.3 cm2) was significantly (P=0.002) smaller than in controls (mean 6.6 cm2). Patients showed left ear extinction using the dichotic listening test and impaired name learning, which was correlated with atrophy of the splenium. There were no differences in interhemispheric transfer time between patients and controls. Marked atrophy of the CC can be encountered in relapsingremitting MS patients. The associated cerebral disconnection correlated with atrophy of expected regions of the CC, thus supporting topographical organization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aboitiz F, Scheibel AB, Fisher RS, Zaidel E (1992) Fiber composition of the human corpus callosum. Brain Res 598:143–153

    Article  PubMed  CAS  Google Scholar 

  2. Barnard RO, Triggs M (1974) Corpus callosum in multiple sclerosis. J Neurol Neurosurg Psychiatry 37:1259–1264

    Article  PubMed  CAS  Google Scholar 

  3. Bashore TD (1981) Vocal and manual reaction time estimates if interhemispheric transmission time. Psychol Bull 89:352–368

    Article  PubMed  CAS  Google Scholar 

  4. Dietemann JL, Beigelmann C, Rumbach L, et al (1988) Multiple sclerosis and corpus callosum atrophy: relationship of MRI findings to clinical data. Neuroradiology 30:478–480

    Article  PubMed  CAS  Google Scholar 

  5. Gean-Marton AD, Vezina LG, Marton KI, et al (1991) Abnormal corpus callosum: a sensitive and specific indicator of multiple sclerosis. Radiology 180:215–221

    PubMed  CAS  Google Scholar 

  6. Habib M, Gayraud D, Regis J, Oliva A, Salamon G, Khalil R (1991) Effects of handedness and sex on the morphology of the corpus callosum. Brain Cogn 16:41–61

    Article  PubMed  CAS  Google Scholar 

  7. Huber SJ, Paulson GW, Shuttleworth EC, et al (1987) Magnetic resonance correlates of dementia in multiple sclerosis. Arch Neurol 44:732–736

    PubMed  CAS  Google Scholar 

  8. Jäncke L, Steinmetz H (1994) Interhemispheric transfer time and corpus callosum size. Neuroreport 5:2385–2388

    Article  PubMed  Google Scholar 

  9. Kertesz A, Polk M, Howell J, Black SE (1987) Cerebral dominance, sex and callosal size in MRI. Neurology 37:1385–1388

    PubMed  CAS  Google Scholar 

  10. Kurtzke FK (1983) Rating neurological impairment in multiple sclerosis: an expanded disability stuatus scale (EDSS). Neurology 33:1444–1452

    PubMed  CAS  Google Scholar 

  11. Levy J, Trevarthen C, Sperry RW (1972) Perception of bilateral chimeric figures following hemispheric disconnection. Brain 95:61–78

    Article  PubMed  CAS  Google Scholar 

  12. Lindeboom J, Horst R ter (1988) Interhemispheric disconnection effects in multiple sclerosis. J Neurol Neurosurg Psychiatry 51:1445–1447

    Article  PubMed  CAS  Google Scholar 

  13. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  PubMed  CAS  Google Scholar 

  14. Pelletrier J, Habib M, Lyon-Caen O, Salamon G, Poncet M, Khalil R (1993) Functional and magnetic resonance imaging correlates of callosal involvement in multiple sclerosis. Arch Neurol 50:1077–1082

    Google Scholar 

  15. Poser CM, Paty DW, Scheinberg L, et al (1983) New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann Neurol 13:227–231

    Article  PubMed  CAS  Google Scholar 

  16. Pozzilli C, Fieschi C, Perani D, et al (1992) Relationship between corpus callosum atrophy and cerebral metabolic asymmetries in multiple sclerosis. J Neurol Sci 112:51–57

    Article  PubMed  CAS  Google Scholar 

  17. Rao SM, Bernardin L, Leo GJ, et al (1989) Relationship to atrophy of the corpus callosum. Arch Neurol 46:918–920

    PubMed  CAS  Google Scholar 

  18. Rauch RA, Jinkins JR (1996) Variability of corpus callosum area measurements from midsagittal MR images: effect of subject placement within the scanner. Am J Neuroradiol 17:27–28

    PubMed  CAS  Google Scholar 

  19. Raven JC (1960) Guide to the standard progressive matrices. Lewis, London

    Google Scholar 

  20. Rugg MD, Lines CR, Milner AD (1985) Further investigations of visual evoked potentials elicited by lateralized stimuli: effects of stimulus eccentricity and reference site. Electroencephalogr Clin Neurophysiol 62:81–87

    Article  PubMed  CAS  Google Scholar 

  21. Scheltens P, Barkhof F, Leys D, et al (1993) A semiquantitative rating scale for the assessment of signal hyperintensities on magnetic resonance imaging. J Neurol Sci 114:7–12

    Article  PubMed  CAS  Google Scholar 

  22. Schnider A, Benson F, Rosner LJ (1993) Callosal disconnection in multiple sclerosis. Neurology 43:1243–1245

    PubMed  CAS  Google Scholar 

  23. Simon JH, Holtas SL, Schiffer RB, et al (1986) Corpus callosum and subcallosal-periventricular lesions in multiple sclerosis: detection with MR. Radiology 160:363–367

    PubMed  CAS  Google Scholar 

  24. Simon JH, Schiffer RB, Rudick RA, Herndon RM (1987) Quantitative determination of MS-induced corpus callosum atrophy in vivo using MR imaging. AJNR Am J Neuroradiol 8:599–604

    PubMed  CAS  Google Scholar 

  25. Snijders JTH, Verhage F (1962) Groninger intelligentie test. Swets & Zeitlinger, Amsterdam

    Google Scholar 

  26. Weihe W, Loew M, Schulze-Siedschlag J, Horstmann A, Welter FL, Mariß G (1989) Multiple Sklerose: Balkenatrophie und Psychosyndrom. Nervenarzt 60:414–419

    PubMed  CAS  Google Scholar 

  27. Weis S, Kimbacher M, Wenger E, Neuhold A (1993) Morphometric analysis of the corpus callosum using MR: correlation of measurements with aging in healthy individuals. AJNR Am J Neuroradiol 14:637–645

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Barkhof.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barkhof, F., Tas, M.W., Valk, J. et al. Functional correlates of callosal atrophy in relapsing-remitting multiple sclerosis patients. A preliminary MRI study. J Neurol 245, 153–158 (1998). https://doi.org/10.1007/s004150050196

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s004150050196

Key words

Navigation