Skip to main content

Advertisement

Log in

Hyperacusis-associated pathological resting-state brain oscillations in the tinnitus brain: a hyperresponsiveness network with paradoxically inactive auditory cortex

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

An Erratum to this article was published on 14 January 2014

Abstract

Although hyperacusis, a hyperresponsiveness to non-noxious auditory stimuli, is a sound-evoked symptom, possible resting-state pathologic oscillations in hyperacusis brain have never been explored. By comparing 17 tinnitus participants with hyperacusis (T+H+) and 17 without hyperacusis (T+H−), we aimed to explore characteristic resting-state cortical activity of hyperacusis. The T+H+ and T+H− groups, strictly matched for all tinnitus sound characteristics to exclude tinnitus-related cortical changes, were compared using resting-state electroencephalography source-localized activity complemented by functional connectivity analyses. Correlation analysis revealed that hyperacusis questionnaire score was positively correlated with the orbitofrontal cortex (OFC) beta power, the right auditory cortex (AC) alpha1 power, and the dorsal anterior cingulate cortex (dACC) beta1 power. Compared to the T+H− group, the T+H+ group demonstrated increased beta power in the dACC and OFC, and increased alpha power in the right AC. Region of interest analyses including 17 normal controls further confirmed that these differences originated solely from relatively increased power of the T+H+ group, not from a relative power decrease of the T+H− group. Also, the T+H+ group showed increased connectivity between the OFC/dACC and the AC as compared to the T+H− group. The beta power increase in the OFC/dACC may indicate increased resting-state vigilance in tinnitus patients with hyperacusis. In addition, increased alpha power in the AC may reflect an adaptive top-down inhibition against sound stimuli probably mediated by the increased beta power of the OFC. The OFC/dACC, also frequently found to be activated in analogous diseases such as allodynia/hyperalgesia, may compose a hyperresponsiveness network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

HQ:

Hyperacusis questionnaire

qEEG:

Quantitative electroencephalography

TQ:

Tinnitus questionnaire

NRS:

Numeric rating scale

sLORETA:

Standardized low-resolution brain electromagnetic tomography

MNI:

Montreal Neurological Institute

ROI:

Region of interest

AC:

Auditory cortex

A2:

Secondary auditory cortex

A1:

Primary auditory cortex

dACC:

Dorsal anterior cingulate cortex

OFC:

Orbitofrontal cortex

SnPM:

Statistical non-parametric mapping

SMA:

Supplementary motor area

dPMC:

Dorsal premotor cortex

References

  • Alper KR, John ER, Brodie J, Gunther W, Daruwala R, Prichep LS (2006) Correlation of PET and qEEG in normal subjects. Psychiatry Res 146:271–282

    PubMed  Google Scholar 

  • Anari M, Axelsson A, Eliasson A, Magnusson L (1999) Hypersensitivity to sound-questionnaire data, audiometry and classification. Scand Audiol 28:219–230

    CAS  PubMed  Google Scholar 

  • Andersson G, Lindvall N, Hursti T, Carlbring P (2002) Hypersensitivity to sound (hyperacusis): a prevalence study conducted via the Internet and post. Int J Audiol 41:545–554

    PubMed  Google Scholar 

  • Atlas LY, Bolger N, Lindquist MA, Wager TD (2010) Brain mediators of predictive cue effects on perceived pain. J Neurosci 30:12964–12977

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baguley DM (2003) Hyperacusis. J R Soc Med 96:582–585

    PubMed Central  PubMed  Google Scholar 

  • Boly M, Balteau E, Schnakers C, Degueldre C, Moonen G, Luxen A, Phillips C, Peigneux P, Maquet P, Laureys S (2007) Baseline brain activity fluctuations predict somatosensory perception in humans. Proc Natl Acad Sci USA 104:12187–12192

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bruder GE, Bansal R, Tenke CE, Liu J, Hao X, Warner V, Peterson BS, Weissman MM (2012) Relationship of resting EEG with anatomical MRI measures in individuals at high and low risk for depression. Hum Brain Mapp 33:1325–1333

    PubMed Central  PubMed  Google Scholar 

  • Cunnington R, Windischberger C, Moser E (2005) Premovement activity of the pre-supplementary motor area and the readiness for action: studies of time-resolved event-related functional MRI. Hum Mov Sci 24:644–656

    PubMed  Google Scholar 

  • Damasio AR (1996) The somatic marker hypothesis and the possible functions of the prefrontal cortex. Philos Trans R Soc Lond B Biol Sci 351:1413–1420

    CAS  PubMed  Google Scholar 

  • Dauman R, Bouscau-Faure F (2005) Assessment and amelioration of hyperacusis in tinnitus patients. Acta Otolaryngol 125:503–509

    PubMed  Google Scholar 

  • Davis SW, Dennis NA, Daselaar SM, Fleck MS, Cabeza R (2008) Que PASA? The posterior-anterior shift in aging. Cereb Cortex 18:1201–1209

    PubMed Central  PubMed  Google Scholar 

  • De Ridder D, Elgoyhen AB, Romo R, Langguth B (2011) Phantom percepts: tinnitus and pain as persisting aversive memory networks. Proc Natl Acad Sci USA 108:8075–8080

    PubMed Central  PubMed  Google Scholar 

  • Dias R, Robbins TW, Roberts AC (1996) Dissociation in prefrontal cortex of affective and attentional shifts. Nature 380:69–72

    CAS  PubMed  Google Scholar 

  • Dosenbach NU, Fair DA, Miezin FM, Cohen AL, Wenger KK, Dosenbach RA, Fox MD, Snyder AZ, Vincent JL, Raichle ME, Schlaggar BL, Petersen SE (2007) Distinct brain networks for adaptive and stable task control in humans. Proc Natl Acad Sci USA 104:11073–11078

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eggermont JJ (2013) Hearing loss, hyperacusis, or tinnitus: What is modeled in animal research? Hear Res 295:140–149

    PubMed  Google Scholar 

  • Farrior JB (1956) Fenestration operation in the poor candidates; 44 cases selected from 637 operations. Laryngoscope 66:566–573

    CAS  PubMed  Google Scholar 

  • Formby C, Sherlock LP, Gold SL (2003) Adaptive plasticity of loudness induced by chronic attenuation and enhancement of the acoustic background. J Acoust Soc Am 114:55–58

    CAS  PubMed  Google Scholar 

  • Freunberger R, Fellinger R, Sauseng P, Gruber W, Klimesch W (2009) Dissociation between phase-locked and nonphase-locked alpha oscillations in a working memory task. Hum Brain Mapp 30:3417–3425

    PubMed  Google Scholar 

  • Frey S, Kostopoulos P, Petrides M (2004) Orbitofrontal contribution to auditory encoding. Neuroimage 22:1384–1389

    PubMed  Google Scholar 

  • Fu MJ, Daly JJ, Cavusoglu MC (2006) A detection scheme for frontalis and temporalis muscle EMG contamination of EEG data. Conf Proc IEEE Eng Med Biol Soc 1:4514–4518

    PubMed  Google Scholar 

  • Fuchs M, Kastner J, Wagner M, Hawes S, Ebersole JS (2002) A standardized boundary element method volume conductor model. Clin Neurophysiol 113:702–712

    PubMed  Google Scholar 

  • Garbarini F, Adenzato M (2004) At the root of embodied cognition: cognitive science meets neurophysiology. Brain Cogn 56:100–106

    PubMed  Google Scholar 

  • Golm D, Schmidt-Samoa C, Dechent P, Kroner-Herwig B (2013) Neural correlates of tinnitus related distress: an fMRI-study. Hear Res 295:87–99

    PubMed  Google Scholar 

  • Goncharova II, McFarland DJ, Vaughan TM, Wolpaw JR (2003) EMG contamination of EEG: spectral and topographical characteristics. Clin Neurophysiol 114:1580–1593

    CAS  PubMed  Google Scholar 

  • Gothelf D, Farber N, Raveh E, Apter A, Attias J (2006) Hyperacusis in Williams syndrome: characteristics and associated neuroaudiologic abnormalities. Neurology 66:390–395

    CAS  PubMed  Google Scholar 

  • Grabenhorst F, Rolls ET, Bilderbeck A (2008) How cognition modulates affective responses to taste and flavor: top-down influences on the orbitofrontal and pregenual cingulate cortices. Cereb Cortex 18:1549–1559

    PubMed  Google Scholar 

  • Gu JW, Halpin CF, Nam EC, Levine RA, Melcher JR (2010) Tinnitus, diminished sound-level tolerance, and elevated auditory activity in humans with clinically normal hearing sensitivity. J Neurophysiol 104:3361–3370

    PubMed Central  PubMed  Google Scholar 

  • Hall DA, Haggard MP, Summerfield AQ, Akeroyd MA, Palmer AR, Bowtell RW (2001) Functional magnetic resonance imaging measurements of sound-level encoding in the absence of background scanner noise. J Acoust Soc Am 109:1559–1570

    CAS  PubMed  Google Scholar 

  • Hamm AO, Vaitl D (1996) Affective learning: awareness and aversion. Psychophysiology 33:698–710

    CAS  PubMed  Google Scholar 

  • Hamm AO, Weike AI (2005) The neuropsychology of fear learning and fear regulation. Int J Psychophysiol 57:5–14

    PubMed  Google Scholar 

  • Herraiz C, Plaza G, Aparicio JM (2006) Mechanisms and management of hyperacusis (decreased sound tolerance). Acta Otorrinolaringol Esp 57:373–377

    CAS  PubMed  Google Scholar 

  • Hiller W, Goebel G (2006) Factors influencing tinnitus loudness and annoyance. Arch Otolaryngol Head Neck Surg 132:1323–1330

    PubMed  Google Scholar 

  • Hiller W, Goebel G, Rief W (1994) Reliability of self-rated tinnitus distress and association with psychological symptom patterns. Br J Clin Psychol 33(Pt 2):231–239

    PubMed  Google Scholar 

  • Holmes AP, Blair RC, Watson JD, Ford I (1996) Nonparametric analysis of statistic images from functional mapping experiments. J Cereb Blood Flow Metab 16:7–22

    CAS  PubMed  Google Scholar 

  • Holtz K, Pane-Farre CA, Wendt J, Lotze M, Hamm AO (2012) Brain activation during anticipation of interoceptive threat. Neuroimage 61:857–865

    PubMed  Google Scholar 

  • Hwang JH, Chou PH, Wu CW, Chen JH, Liu TC (2009) Brain activation in patients with idiopathic hyperacusis. Am J Otolaryngol 30:432–434

    PubMed  Google Scholar 

  • Jastreboff PJ (1990) Phantom auditory perception (tinnitus): mechanisms of generation and perception. Neurosci Res 8:221–254

    CAS  PubMed  Google Scholar 

  • Jones AK, Derbyshire SW (1997) Reduced cortical responses to noxious heat in patients with rheumatoid arthritis. Ann Rheum Dis 56:601–607

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jurcak V, Tsuzuki D, Dan I (2007) 10/20, 10/10, and 10/5 systems revisited: their validity as relative head-surface-based positioning systems. Neuroimage 34:1600–1611

    PubMed  Google Scholar 

  • Kalisch R, Wiech K, Critchley HD, Seymour B, O’Doherty JP, Oakley DA, Allen P, Dolan RJ (2005) Anxiety reduction through detachment: subjective, physiological, and neural effects. J Cogn Neurosci 17:874–883

    PubMed  Google Scholar 

  • Kalisch R, Wiech K, Herrmann K, Dolan RJ (2006) Neural correlates of self-distraction from anxiety and a process model of cognitive emotion regulation. J Cogn Neurosci 18:1266–1276

    PubMed Central  PubMed  Google Scholar 

  • Katzenell U, Segal S (2001) Hyperacusis: review and clinical guidelines. Otol Neurotol 22:321–326 (discussion 326–327)

    CAS  PubMed  Google Scholar 

  • Keren AS, Yuval-Greenberg S, Deouell LY (2010) Saccadic spike potentials in gamma-band EEG: characterization, detection and suppression. Neuroimage 49:2248–2263

    PubMed  Google Scholar 

  • Khalfa S, Dubal S, Veuillet E, Perez-Diaz F, Jouvent R, Collet L (2002) Psychometric normalization of a hyperacusis questionnaire. ORL J Otorhinolaryngol Relat Spec 64:436–442

    CAS  PubMed  Google Scholar 

  • Klavir O, Genud-Gabai R, Paz R (2012) Low-frequency stimulation depresses the primate anterior-cingulate-cortex and prevents spontaneous recovery of aversive memories. J Neurosci 32:8589–8597

    CAS  PubMed  Google Scholar 

  • Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Brain Res Rev 29:169–195

    CAS  PubMed  Google Scholar 

  • Koprivova J, Congedo M, Horacek J, Prasko J, Raszka M, Brunovsky M, Kohutova B, Hoschl C (2011) EEG source analysis in obsessive-compulsive disorder. Clin Neurophysiol 122:1735–1743

    PubMed  Google Scholar 

  • Kramer HH, Stenner C, Seddigh S, Bauermann T, Birklein F, Maihofner C (2008) Illusion of pain: pre-existing knowledge determines brain activation of ‘imagined allodynia’. J Pain 9:543–551

    PubMed  Google Scholar 

  • Kringelbach ML (2005) The human orbitofrontal cortex: linking reward to hedonic experience. Nat Rev Neurosci 6:691–702

    CAS  PubMed  Google Scholar 

  • Lanz S, Seifert F, Maihofner C (2011) Brain activity associated with pain, hyperalgesia and allodynia: an ALE meta-analysis. J Neural Transm 118:1139–1154

    PubMed  Google Scholar 

  • Lehtela L, Salmelin R, Hari R (1997) Evidence for reactive magnetic 10-Hz rhythm in the human auditory cortex. Neurosci Lett 222:111–114

    CAS  PubMed  Google Scholar 

  • Levitin DJ, Menon V, Schmitt JE, Eliez S, White CD, Glover GH, Kadis J, Korenberg JR, Bellugi U, Reiss AL (2003) Neural correlates of auditory perception in Williams syndrome: an fMRI study. Neuroimage 18:74–82

    PubMed  Google Scholar 

  • Logan JM, Sanders AL, Snyder AZ, Morris JC, Buckner RL (2002) Under-recruitment and nonselective recruitment: dissociable neural mechanisms associated with aging. Neuron 33:827–840

    CAS  PubMed  Google Scholar 

  • Mahoney CJ, Rohrer JD, Goll JC, Fox NC, Rossor MN, Warren JD (2011) Structural neuroanatomy of tinnitus and hyperacusis in semantic dementia. J Neurol Neurosurg Psychiatry 82:1274–1278

    PubMed Central  PubMed  Google Scholar 

  • Marriage J, Barnes NM (1995) Is central hyperacusis a symptom of 5-hydroxytryptamine (5-HT) dysfunction? J Laryngol Otol 109:915–921

    CAS  PubMed  Google Scholar 

  • McMenamin BW, Shackman AJ, Maxwell JS, Bachhuber DR, Koppenhaver AM, Greischar LL, Davidson RJ (2010) Validation of ICA-based myogenic artifact correction for scalp and source-localized EEG. Neuroimage 49:2416–2432

    PubMed Central  PubMed  Google Scholar 

  • Mechias ML, Etkin A, Kalisch R (2010) A meta-analysis of instructed fear studies: implications for conscious appraisal of threat. Neuroimage 49:1760–1768

    PubMed  Google Scholar 

  • Meeus O, Blaivie C, Van de Heyning P (2007) Validation of the Dutch and the French version of the Tinnitus Questionnaire. B-ENT 3(Suppl 7):11–17

    PubMed  Google Scholar 

  • Meeus O, Heyndrickx K, Lambrechts P, De Ridder D, Van de Heyning P (2010a) Phase-shift treatment for tinnitus of cochlear origin. Eur Arch Otorhinolaryngol 267:881–888

    PubMed  Google Scholar 

  • Meeus OM, Spaepen M, Ridder DD, Heyning PH (2010b) Correlation between hyperacusis measurements in daily ENT practice. Int J Audiol 49:7–13

    PubMed  Google Scholar 

  • Mirandola P, Gobbi G, Malinverno C, Carubbi C, Ferne FM, Artico M, Vitale M, Vaccarezza M (2013) Impact of sulphurous water politzer inhalation on audiometric parameters in children with otitis media with effusion. Clin Exp Otorhinolaryngol 6:7–11

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moazami-Goudarzi M, Michels L, Weisz N, Jeanmonod D (2010) Temporo-insular enhancement of EEG low and high frequencies in patients with chronic tinnitus. QEEG study of chronic tinnitus patients. BMC Neurosci 11:40

    PubMed Central  PubMed  Google Scholar 

  • Moisset X, Bouhassira D (2007) Brain imaging of neuropathic pain. Neuroimage 37(Suppl 1):S80–S88

    PubMed  Google Scholar 

  • Moller AR (2006) Neural plasticity in tinnitus. Prog Brain Res 157:365–372

    PubMed  Google Scholar 

  • Moller AR (2007a) Tinnitus and pain. Prog Brain Res 166:47–53

    CAS  PubMed  Google Scholar 

  • Moller AR (2007b) Tinnitus: presence and future. Prog Brain Res 166:3–16

    CAS  PubMed  Google Scholar 

  • Moller AR (2009) Plasticity diseases. Neurol Res 31:1023–1030

    PubMed  Google Scholar 

  • Mulert C, Jager L, Schmitt R, Bussfeld P, Pogarell O, Moller HJ, Juckel G, Hegerl U (2004) Integration of fMRI and simultaneous EEG: towards a comprehensive understanding of localization and time-course of brain activity in target detection. Neuroimage 22:83–94

    PubMed  Google Scholar 

  • Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 15:1–25

    PubMed  Google Scholar 

  • Nitschke JB, Sarinopoulos I, Mackiewicz KL, Schaefer HS, Davidson RJ (2006) Functional neuroanatomy of aversion and its anticipation. Neuroimage 29:106–116

    PubMed  Google Scholar 

  • Norena AJ, Moffat G, Blanc JL, Pezard L, Cazals Y (2010) Neural changes in the auditory cortex of awake guinea pigs after two tinnitus inducers: salicylate and acoustic trauma. Neuroscience 166:1194–1209

    CAS  PubMed  Google Scholar 

  • O’Doherty JP (2004) Reward representations and reward-related learning in the human brain: insights from neuroimaging. Curr Opin Neurobiol 14:769–776

    PubMed  Google Scholar 

  • Pae JS, Kwon JS, Youn T, Park HJ, Kim MS, Lee B, Park KS (2003) LORETA imaging of P300 in schizophrenia with individual MRI and 128-channel EEG. Neuroimage 20:1552–1560

    PubMed  Google Scholar 

  • Pascual-Marqui RD (2002) Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol 24(Suppl D):5–12

    PubMed  Google Scholar 

  • Pascual-Marqui RD (2007) Instantaneous and lagged measurements of linear and nonlinear dependence between groups of multivariate time series: frequency decomposition. Arxiv preprint arXiv:07111455

  • Peyron R, Laurent B, Garcia-Larrea L (2000) Functional imaging of brain responses to pain. A review and meta-analysis (2000). Neurophysiol Clin 30:263–288

    CAS  PubMed  Google Scholar 

  • Pizzagalli DA, Oakes TR, Fox AS, Chung MK, Larson CL, Abercrombie HC, Schaefer SM, Benca RM, Davidson RJ (2004) Functional but not structural subgenual prefrontal cortex abnormalities in melancholia. Mol Psychiatry 9(325):393–405

    Google Scholar 

  • Raz N, Rodrigue KM (2006) Differential aging of the brain: patterns, cognitive correlates and modifiers. Neurosci Biobehav Rev 30:730–748

    PubMed  Google Scholar 

  • Rolls ET (2004) The functions of the orbitofrontal cortex. Brain Cogn 55:11–29

    PubMed  Google Scholar 

  • Rolls ET, Grabenhorst F (2008) The orbitofrontal cortex and beyond: from affect to decision-making. Prog Neurobiol 86:216–244

    PubMed  Google Scholar 

  • Rosen SD, Paulesu E, Frith CD, Frackowiak RS, Davies GJ, Jones T, Camici PG (1994) Central nervous pathways mediating angina pectoris. Lancet 344:147–150

    CAS  PubMed  Google Scholar 

  • Sadaghiani S, Hesselmann G, Kleinschmidt A (2009) Distributed and antagonistic contributions of ongoing activity fluctuations to auditory stimulus detection. J Neurosci 29:13410–13417

    CAS  PubMed  Google Scholar 

  • Sauseng P, Klimesch W (2008) What does phase information of oscillatory brain activity tell us about cognitive processes? Neurosci Biobehav Rev 32:1001–1013

    PubMed  Google Scholar 

  • Scharmuller W, Leutgeb V, Schafer A, Kochel A, Schienle A (2011) Source localization of late electrocortical positivity during symptom provocation in spider phobia: an sLORETA study. Brain Res 1397:10–18

    PubMed Central  PubMed  Google Scholar 

  • Schecklmann M, Landgrebe M, Poeppl TB, Kreuzer P, Manner P, Marienhagen J, Wack DS, Kleinjung T, Hajak G, Langguth B (2013) Neural correlates of tinnitus duration and distress: a positron emission tomography study. Hum Brain Mapp 34(1):233–240

    PubMed  Google Scholar 

  • Schlee W, Hartmann T, Langguth B, Weisz N (2009) Abnormal resting-state cortical coupling in chronic tinnitus. BMC Neurosci 10:11

    PubMed Central  PubMed  Google Scholar 

  • Schlee W, Kleinjung T, Hiller W, Goebel G, Kolassa IT, Langguth B (2011) Does tinnitus distress depend on age of onset? PLoS ONE 6:e27379

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sekihara K, Sahani M, Nagarajan SS (2005) Localization bias and spatial resolution of adaptive and non-adaptive spatial filters for MEG source reconstruction. Neuroimage 25:1056–1067

    PubMed  Google Scholar 

  • Sherlin L, Congedo M (2005) Obsessive-compulsive dimension localized using low-resolution brain electromagnetic tomography (LORETA). Neurosci Lett 387:72–74

    CAS  PubMed  Google Scholar 

  • Siepmann M, Kirch W (2002) Effects of caffeine on topographic quantitative EEG. Neuropsychobiology 45:161–166

    CAS  PubMed  Google Scholar 

  • Song JJ, Choi HG, Oh SH, Chang SO, Kim CS, Lee JH (2009) Unilateral sensorineural hearing loss in children: the importance of temporal bone computed tomography and audiometric follow-up. Otol Neurotol 30:604–608

    PubMed  Google Scholar 

  • Song JJ, De Ridder D, Van de Heyning P, Vanneste S (2012a) Mapping tinnitus-related brain activation: an activation-likelihood estimation metaanalysis of PET studies. J Nucl Med 53:1550–1557

    PubMed  Google Scholar 

  • Song JJ, Hong SK, Kim JS, Koo JW (2012b) Enlarged vestibular aqueduct may precipitate benign paroxysmal positional vertigo in children. Acta Otolaryngol 132(Suppl 1):S109–S117

    PubMed  Google Scholar 

  • Song JJ, De Ridder D, Schlee W, Van de Heyning P, Vanneste S (2013a) “Distressed aging”: the differences in brain activity between early- and late-onset tinnitus. Neurobiol Aging 34:1853–1863

    PubMed  Google Scholar 

  • Song JJ, Punte AK, De Ridder D, Vanneste S, Van de Heyning P (2013b) Neural substrates predicting improvement of tinnitus after cochlear implantation in patients with single-sided deafness. Hear Res 299C:1–9

    Google Scholar 

  • Sun W, Zhang L, Lu J, Yang G, Laundrie E, Salvi R (2008) Noise exposure-induced enhancement of auditory cortex response and changes in gene expression. Neuroscience 156:374–380

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sun W, Lu J, Stolzberg D, Gray L, Deng A, Lobarinas E, Salvi RJ (2009) Salicylate increases the gain of the central auditory system. Neuroscience 159:325–334

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sun W, Deng A, Jayaram A, Gibson B (2012) Noise exposure enhances auditory cortex responses related to hyperacusis behavior. Brain Res 1485:108–116

    CAS  PubMed  Google Scholar 

  • Turner JG, Parrish J (2008) Gap detection methods for assessing salicylate-induced tinnitus and hyperacusis in rats. Am J Audiol 17:S185–S192

    PubMed  Google Scholar 

  • Vanneste S, Plazier M, der Loo E, de Heyning PV, Congedo M, De Ridder D (2010a) The neural correlates of tinnitus-related distress. Neuroimage 52:470–480

    PubMed  Google Scholar 

  • Vanneste S, Plazier M, van der Loo E, Van de Heyning P, De Ridder D (2010b) The differences in brain activity between narrow band noise and pure tone tinnitus. PLoS ONE 5:e13618

    PubMed Central  PubMed  Google Scholar 

  • Vanneste S, Plazier M, van der Loo E, Van de Heyning P, De Ridder D (2011a) The difference between uni- and bilateral auditory phantom percept. Clin Neurophysiol 122:578–587

    PubMed  Google Scholar 

  • Vanneste S, van de Heyning P, De Ridder D (2011b) The neural network of phantom sound changes over time: a comparison between recent-onset and chronic tinnitus patients. Eur J Neurosci 34:718–731

    PubMed  Google Scholar 

  • Vanneste S, Joos K, De Ridder D (2012) Prefrontal cortex based sex differences in tinnitus perception: same tinnitus intensity, same tinnitus distress, different mood. PLoS ONE 7:e31182

    CAS  PubMed Central  PubMed  Google Scholar 

  • Varela F, Lachaux JP, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2:229–239

    CAS  PubMed  Google Scholar 

  • Vernon JA (1987) Pathophysiology of tinnitus: a special case–hyperacusis and a proposed treatment. Am J Otol 8:201–202

    CAS  PubMed  Google Scholar 

  • Vitacco D, Brandeis D, Pascual-Marqui R, Martin E (2002) Correspondence of event-related potential tomography and functional magnetic resonance imaging during language processing. Hum Brain Mapp 17:4–12

    PubMed  Google Scholar 

  • Volkow ND, Logan J, Fowler JS, Wang GJ, Gur RC, Wong C, Felder C, Gatley SJ, Ding YS, Hitzemann R, Pappas N (2000) Association between age-related decline in brain dopamine activity and impairment in frontal and cingulate metabolism. Am J Psychiatry 157:75–80

    CAS  PubMed  Google Scholar 

  • Volpe U, Mucci A, Bucci P, Merlotti E, Galderisi S, Maj M (2007) The cortical generators of P3a and P3b: a LORETA study. Brain Res Bull 73:220–230

    CAS  PubMed  Google Scholar 

  • Volz KG, von Cramon DY (2009) How the orbitofrontal cortex contributes to decision making—a view from neuroscience. Prog Brain Res 174:61–71

    PubMed  Google Scholar 

  • Wagner M, Fuchs M, Kastner J (2004) Evaluation of sLORETA in the presence of noise and multiple sources. Brain Topogr 16:277–280

    PubMed  Google Scholar 

  • Weisz N, Moratti S, Meinzer M, Dohrmann K, Elbert T (2005) Tinnitus perception and distress is related to abnormal spontaneous brain activity as measured by magnetoencephalography. PLoS Med 2:e153

    PubMed Central  PubMed  Google Scholar 

  • Weisz N, Muller S, Schlee W, Dohrmann K, Hartmann T, Elbert T (2007) The neural code of auditory phantom perception. J Neurosci 27:1479–1484

    CAS  PubMed  Google Scholar 

  • Weisz N, Hartmann T, Muller N, Lorenz I, Obleser J (2011) Alpha rhythms in audition: cognitive and clinical perspectives. Front Psychol 2:73

    PubMed Central  PubMed  Google Scholar 

  • White DJ, Congedo M, Ciorciari J, Silberstein RB (2012) Brain oscillatory activity during spatial navigation: theta and gamma activity link medial temporal and parietal regions. J Cogn Neurosci 24:686–697

    PubMed  Google Scholar 

  • Witting N, Kupers RC, Svensson P, Arendt-Nielsen L, Gjedde A, Jensen TS (2001) Experimental brush-evoked allodynia activates posterior parietal cortex. Neurology 57:1817–1824

    CAS  PubMed  Google Scholar 

  • Witting N, Kupers RC, Svensson P, Jensen TS (2006) A PET activation study of brush-evoked allodynia in patients with nerve injury pain. Pain 120:145–154

    PubMed  Google Scholar 

  • Woodhouse A, Drummond PD (1993) Mechanisms of increased sensitivity to noise and light in migraine headache. Cephalalgia 13:417–421

    CAS  PubMed  Google Scholar 

  • Worrell GA, Lagerlund TD, Sharbrough FW, Brinkmann BH, Busacker NE, Cicora KM, O’Brien TJ (2000) Localization of the epileptic focus by low-resolution electromagnetic tomography in patients with a lesion demonstrated by MRI. Brain Topogr 12:273–282

    CAS  PubMed  Google Scholar 

  • Wright P, Albarracin D, Brown RD, Li H, He G, Liu Y (2008) Dissociated responses in the amygdala and orbitofrontal cortex to bottom-up and top-down components of emotional evaluation. Neuroimage 39:894–902

    PubMed Central  PubMed  Google Scholar 

  • Zeng FG (2013) An active loudness model suggesting tinnitus as increased central noise and hyperacusis as increased nonlinear gain. Hear Res 295:172–179

    PubMed Central  PubMed  Google Scholar 

  • Zumsteg D, Wennberg RA, Treyer V, Buck A, Wieser HG (2005) H2(15)O or 13NH3 PET and electromagnetic tomography (LORETA) during partial status epilepticus. Neurology 65:1657–1660

    CAS  PubMed  Google Scholar 

  • Zumsteg D, Lozano AM, Wennberg RA (2006a) Depth electrode recorded cerebral responses with deep brain stimulation of the anterior thalamus for epilepsy. Clin Neurophysiol 117:1602–1609

    PubMed  Google Scholar 

  • Zumsteg D, Lozano AM, Wennberg RA (2006b) Mesial temporal inhibition in a patient with deep brain stimulation of the anterior thalamus for epilepsy. Epilepsia 47:1958–1962

    PubMed  Google Scholar 

  • Zumsteg D, Lozano AM, Wieser HG, Wennberg RA (2006c) Cortical activation with deep brain stimulation of the anterior thalamus for epilepsy. Clin Neurophysiol 117:192–207

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Jan Ost, Bram Van Achteren, Bjorn Devree, Pieter van Looy and James Hartzell for their help in preparing this manuscript and thank Thomas Hartmann and Nadia Muller for their import comments. Also, the first author thanks Dr. DY Yoon for giving invaluable support to this study. This work was supported by Research Foundation Flanders (FWO), Tinnitus Research Initiative, The Neurological Foundation of New Zealand, TOP project University Antwerp, and the Korean Science and Engineering Foundation (KOSEF) grant funded by the Korean government (MOST) (No. 2012-0030102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Jin Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, JJ., De Ridder, D., Weisz, N. et al. Hyperacusis-associated pathological resting-state brain oscillations in the tinnitus brain: a hyperresponsiveness network with paradoxically inactive auditory cortex. Brain Struct Funct 219, 1113–1128 (2014). https://doi.org/10.1007/s00429-013-0555-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-013-0555-1

Keywords

Navigation