Skip to main content

Advertisement

Log in

Asymmetry, connectivity, and segmentation of the arcuate fascicle in the human brain

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The structure and function of the arcuate fascicle is still controversial. The goal of this study was to investigate the asymmetry, connectivity, and segmentation patterns of the arcuate fascicle. We employed diffusion spectrum imaging reconstructed by generalized q-sampling and we applied both a subject-specific approach (10 subjects) and a template approach (q-space diffeomorphic reconstruction of 30 subjects). We complemented our imaging investigation with fiber microdissection of five post-mortem human brains. Our results confirmed the highly leftward asymmetry of the arcuate fascicle. In the template, the left arcuate had a volume twice as large as the right one, and the left superior temporal gyrus provided five times more volume of fibers than its counterpart. We identified four cortical frontal areas of termination: pars opercularis, pars triangularis, ventral precentral gyrus, and caudal middle frontal gyrus. We found clear asymmetry of the frontal terminations at pars opercularis and ventral precentral gyrus. The analysis of patterns of connectivity revealed the existence of a strong structural segmentation in the left arcuate, but not in the right one. The left arcuate fascicle is formed by an inner or ventral pathway, which interconnects pars opercularis with superior and rostral middle temporal gyri; and an outer or dorsal pathway, which interconnects ventral precentral and caudal middle frontal gyri with caudal middle and inferior temporal gyri. The fiber microdissection results provided further support to our tractography studies. We propose the existence of primary and supplementary language pathways within the dominant arcuate fascicle with potentially distinct functional and lesional features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AAL:

Automated anatomical labeling

AF:

Arcuate fascicle

BA:

Brodmann area

CORID:

Committee for oversight research involving dead

DSI:

Diffusion spectrum imaging

DTI:

Diffusion tensor imaging

EPI:

Echo planar imaging

fMRI:

Functional MRI

FoV:

Field of view

GQI:

Generalized q-sampling imaging

ITG:

Inferior temporal gyrus

MdLF:

Middle longitudinal fascicle

MTG:

Middle temporal gyrus

ODF:

Orientation distribution function

QA:

Quantitative anisotropy

ROI:

Region of interest

SLF:

Superior longitudinal fascicle

STG:

Superior temporal gyrus

TR:

Repetition time

References

  • Agrawal A, Kapfhammer JP, Kress A, Wichers H, Deep A, Feindel W et al (2011) Josef Klingler’s models of white matter tracts: influences on neuroanatomy, neurosurgery, and neuroimaging. Neurosurgery 69:238–252

    Article  PubMed  Google Scholar 

  • Amunts K, Schleicher A, Zilles K (2004) Outstanding language competence and cytoarchitecture in Broca’s speech region. Brain Lang 89:346–353

    Article  PubMed  Google Scholar 

  • Anwander A, Tittgemeyer M, von Cramon DY, Friederici AD, Knosche TR (2007) Connectivity-based parcellation of Broca’s area. Cereb Cortex 17:816–825

    Article  CAS  PubMed  Google Scholar 

  • Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A (2000) In vivo fiber tractography using DT-MRI data. Magn Reson Med 44:625–632

    Article  CAS  PubMed  Google Scholar 

  • Catani M, Jones DK, Ffytche DH (2005) Perisylvian language networks of the human brain. Ann Neurol 57:8–16

    Article  PubMed  Google Scholar 

  • Catani M, Allin MP, Husain M, Pugliese L, Mesulam MM, Murray RM, Jones DK (2007) Symmetries in human brain language pathways correlate with verbal recall. Proc Natl Acad Sci USA 104:17163–17168

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chi JG, Dooling EC, Gilles FH (1977) Left-right asymmetries of the temporal speech areas of the human fetus. Arch Neurol 34:346–348

    Article  CAS  PubMed  Google Scholar 

  • Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31:968–980

    Article  PubMed  Google Scholar 

  • Dick AS, Tremblay P (2012) Beyond the arcuate fasciculus: consensus and controversy in the connectional anatomy of language. Brain 135:3529–3550

    Article  PubMed  Google Scholar 

  • Fernandez-Miranda JC (2013) Beyond diffusion tensor imaging. J Neurosurg 118:1363–1366

    Article  PubMed  Google Scholar 

  • Fernandez-Miranda JC, Rhoton AL Jr, Kakizawa Y, Choi C, Alvarez-Linera J (2008a) The claustrum and its projection system in the human brain: a microsurgical and tractographic anatomical study. J Neurosurg 108:764–774

    Article  PubMed  Google Scholar 

  • Fernandez-Miranda JC, Rhoton AL Jr, Alvarez-Linera J, Kakizawa Y, Choi C, de Oliveira EP (2008b) Three-dimensional microsurgical and tractographic anatomy of the white matter of the human brain. Neurosurgery 62:989–1026

    Article  PubMed  Google Scholar 

  • Fernandez-Miranda JC, Pathak S, Engh J, Jarbo K, Verstynen T, Yeh FC et al (2012) High-definition fiber tractography of the human brain: neuroanatomical validation and neurosurgical applications. Neurosurgery 71:430–453

    Article  PubMed  Google Scholar 

  • Fonov V, Evans AC, Botteron K, Almli CR, McKinstry RC, Collins DL (2011) Unbiased average age-appropriate atlases for pediatric studies. Neuroimage 54:313–327

    Article  PubMed Central  PubMed  Google Scholar 

  • Friederici AD (2006) The neural basis of language development and its impairment. Neuron 52:941–952

    Article  CAS  PubMed  Google Scholar 

  • Friederici AD (2009) Pathways to language: fiber tracts in the human brain. Trends Cogn Sci 13:175–181

    Article  PubMed  Google Scholar 

  • Galaburda AM, LeMay M, Kemper TL, Geschwind N (1978) Right-left asymmetries in the brain. Science 199:852–856

    Article  CAS  PubMed  Google Scholar 

  • Glasser MF, Rilling JK (2008) DTI tractography of the human brain’s language pathways. Cereb Cortex 18:2471–2482

    Article  PubMed  Google Scholar 

  • Greenberg AS, Verstynen T, Chiu YC, Yantis S, Schneider W, Behrmann MJ (2012) Visuotopic cortical connectivity underlying attention revealed with white-matter tractography. J Neurosci 32:2773–2782

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hagmann P, Jonasson L, Maeder P, Thiran JP, Wedeen VJ, Meuli R (2006) Understanding diffusion MR imaging techniques: from scalar diffusion-weighted imaging to diffusion tensor imaging and beyond. Radiographics 26(Suppl 1):S205–S223

    Article  PubMed  Google Scholar 

  • Hickok G (2012) The cortical organization of speech processing: feedback control and predictive coding the context of a dual-stream model. J Commun Disord 45:393–402

    Article  PubMed Central  PubMed  Google Scholar 

  • Hickok G, Poeppel D (2004) Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language. Cognition 92:67–99

    Article  PubMed  Google Scholar 

  • Hickok G, Poeppel D (2007) The cortical organization of speech processing. Nat Rev Neurosci 8:393–402

    Article  CAS  PubMed  Google Scholar 

  • Jarbo K, Verstynen T, Schneider W (2012) In vivo quantification of global connectivity in the human corpus callosum. Neuroimage 59:1988–1996

    Article  PubMed  Google Scholar 

  • Jbabdi S, Johansen-Berg H (2011) Tractography: where do we go from here? Brain Connect 1:169–183

    Article  PubMed Central  PubMed  Google Scholar 

  • Jones DK, Cercignani M (2010) Twenty-five pitfalls in the analysis of diffusion MRI data. NMR Biomed 23:803–820

    Article  PubMed  Google Scholar 

  • Jones DK, Knosche TR, Turner R (2013) White matter integrity, fiber count, and other fallacies: the do’s and don’ts of diffusion MRI. Neuroimage 73:239–254

    Article  PubMed  Google Scholar 

  • Ludwig E, Klingler J (1965) Atlas cerebri humani. The inner structure of the brain demonstrated on the basis of macroscopical preparations. Little Brown, Boston

    Google Scholar 

  • Makris N, Kennedy DN, McInerney S, Sorensen AG, Wang R, Caviness VS Jr et al (2005) Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study. Cereb Cortex 15:854–869

    Article  PubMed  Google Scholar 

  • Martino J, da Silva-Feritas R, Caballero H, Marco de Lucas E, García-Porrero JA, Vázquez-Barquero A (2013a) Fiber dissection and DTI tractography study of the temporo-parietal fiber intersection area. Neurosurgery 72(Suppl Operative):87–97

    PubMed  Google Scholar 

  • Martino J, De Witt Hamer PC, Berger MS, Lawton MT, Arnold CM, de Lucas EM et al (2013b) Analysis of the subcomponents and cortical terminations of the perisylvian superior longitudinal fasciculus: a fiber dissection and DTI tractography study. Brain Struct Funct 218:105–121

    Article  PubMed  Google Scholar 

  • Nucifora PG, Verma R, Melhem ER, Gur RE, Gur RC (2005) Leftward asymmetry in relative fiber density of the arcuate fasciculus. NeuroReport 16:791–794

    Article  PubMed  Google Scholar 

  • Powell HW, Parker GJ, Alexander DC, Symms MR, Boulby PA, Wheeler-Kingshott CA et al (2006) Hemispheric asymmetries in language-related pathways: a combined functional MRI and tractography study. Neuroimage 32:388–399

    Article  PubMed  Google Scholar 

  • Riecker A, Wildgruber D, Dogil G, Grodd W, Ackermann H (2012) Hemispheric lateralization effects of rhythm implementation during syllable repetitions: an fMRI study. Neuroimage 16:169–176

    Article  Google Scholar 

  • Rilling JK, Glasser MF, Preuss TM, Ma X, Zhao T, Hu X et al (2008) The evolution of the arcuate fasciculus revealed with comparative DTI. Nat Neurosci 11:426–428

    Article  CAS  PubMed  Google Scholar 

  • Rilling JK, Glasser MF, Jbabdi S, Andersson J, Preuss TM (2011) Continuity, divergence, and the evolution of brain language pathways. Front Evol Neurosci 3:11

    PubMed Central  PubMed  Google Scholar 

  • Saur D, Kreher BW, Schnell S, Kümmerer D, Kellmeyer P, Vry MS et al (2008) Ventral and dorsal pathways for language. Proc Natl Acad Sci USA 105:18035–18040

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schmahmann JD, Pandya DN (2006) Fiber pathways of the brain. Oxford University Press, Oxford

    Book  Google Scholar 

  • Schmahmann JD, Pandya DN, Wang R, Dai G, D’Arceuil HE, de Crespigny AJ et al (2007) Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. Brain 130:630–653

    Article  PubMed  Google Scholar 

  • Thiebaut de Schotten M, Dell’Acqua F, Valabregue R, Catani M (2012) Monkey to human comparative anatomy of the frontal lobe association tracts. Cortex 48:82–96

    Article  PubMed  Google Scholar 

  • Türe U, Yaşargil MG, Friedman AH, Al-Mefty O (2000) Fiber dissection technique: lateral aspect of the brain. Neurosurgery 47:417–426

    Article  PubMed  Google Scholar 

  • Vandenberghe R, Price C, Wise R, Josephs O, Frackowiak RS (1996) Functional anatomy of a common semantic system for words and pictures. Nature 383:254–256

    Article  CAS  PubMed  Google Scholar 

  • Vernooij MW, Smits M, Wielopolski PA, Houston GC, Krestin GP, van der Lugt A (2007) Fiber density asymmetry of the arcuate fasciculus in relation to functional hemispheric language lateralization in both right- and left-handed healthy subjects: a combined fMRI and DTI study. Neuroimage 35:1064–1076

    Article  CAS  PubMed  Google Scholar 

  • Verstynen T, Jarbo K, Pathak S, Schneider W (2011) In vivo mapping of microstructural somatotopies in the human corticospinal pathways. J Neurophysiol 105:336–346

    Article  PubMed  Google Scholar 

  • Wang Y, Fernandez-Miranda JC, Verstynen T, Pathak S, Schneider W, Yeh FC (2013) Rethinking the role of the middle longitudinal fascicle in language and auditory pathways. Cereb Cortex 23:2347–2356

    Article  PubMed  Google Scholar 

  • Wedeen VJ, Wang RP, Schmahmann JD, Benner T, Tseng WY, Dai G et al (2008) Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. Neuroimage 41:1267–1277

    Article  CAS  PubMed  Google Scholar 

  • Weiller C, Bormann T, Saur D, Musso M, Rijntjes M (2011) How the ventral pathway got lost: and what its recovery might mean. Brain Lang 118:29–39

    Article  PubMed  Google Scholar 

  • Yeh FC, Tseng WY (2011) NTU-90: a high angular resolution brain atlas constructed by q-space diffeomorphic reconstruction. Neuroimage 58:91–99

    Article  PubMed  Google Scholar 

  • Yeh FC, Wedeen VJ, Tseng WY (2010) Generalized q-sampling imaging. IEEE Trans Med Imaging 29:1626–1635

    Article  PubMed  Google Scholar 

  • Yeh FC, Verstynen TD, Wang Y, Fernández-Miranda JC, Tseng WY (2013) Deterministic diffusion fiber tracking improved by quantitative anisotropy. PLoS One 8(11):e80713. doi:10.1371/journal.pone.0080713

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The first author would like to acknowledge Maria Jose, Blanca, Martin, Sol, and Alonso for their continuous support to complete this project. The Copeland Fund of The Pittsburgh Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan C. Fernández-Miranda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández-Miranda, J.C., Wang, Y., Pathak, S. et al. Asymmetry, connectivity, and segmentation of the arcuate fascicle in the human brain. Brain Struct Funct 220, 1665–1680 (2015). https://doi.org/10.1007/s00429-014-0751-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-014-0751-7

Keywords

Navigation