Skip to main content
Log in

Fluid–structure interaction modeling of a patient-specific cerebral aneurysm: influence of structural modeling

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Fluid–structure interaction (FSI) simulations of a cerebral aneurysm with the linearly elastic and hyper-elastic wall constitutive models are carried out to investigate the influence of the wall-structure model on patient-specific FSI simulations. The maximum displacement computed with the hyper-elastic model is 36% smaller compared to the linearly elastic material model, but the displacement patterns such as the site of local maxima are not sensitive to the wall models. The blood near the apex of an aneurysm is likely to be stagnant, which causes very low wall shear stress and is a factor in rupture by degrading the aneurysmal wall. In this study, however, relatively high flow velocities due to the interaction between the blood flow and aneurysmal wall are seen to be independent of the wall model. The present results indicate that both linearly elastic and hyper-elastic models can be useful to investigate aneurysm FSI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Steiger HJ (1990) Pathophysiology of development and rupture of cerebral aneurysms. Acta Neurochir Suppl 48: 1–57

    Google Scholar 

  2. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Fluid–structure interaction modeling of aneurysmal conditions with high and normal blood pressures. Comput Mech 38: 482–490

    Article  MATH  Google Scholar 

  3. Komatsu Y, Yasuda S, Shibata T, Ono Y, Hyodo A, Nose T (1994) Management for subarachnoid hemorrhage with negative initial angiography. Neurol Surg (in Japanese) 22: 43–49

    Google Scholar 

  4. Taylor CL, Yuan Z, Selman WR, Ratcheson RA, Rimm AA (1995) Cerebral arterial aneurysm formation and rupture in 20,767 elderly patients: hypertension and other risk factors. J Neurosurg 83: 812–819

    Google Scholar 

  5. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2007) Fluid–structure interaction modeling of blood flow and cerebral aneurysm: significance of arterial and aneurysm shape. In: Proceedings of USNCCM9, San Francisco, July

  6. Fung YC (1993) Biomechanics: mechanicsl properties of living tissue, 2 edn. Springer, New York

    Google Scholar 

  7. Humphrey JD (2002) Cardiovascular solid mechanics. Cells, tissues, and organs. Springer, New York

    Google Scholar 

  8. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2007) Influence of wall elasticity in patient-specific hemodynamic simulations. Comput Fluids 36: 160–168

    Article  MATH  Google Scholar 

  9. Baek S, Gleason RL, Rajagopal KR, Humphrey JD (2007) Theory of small on large: Potential utility in computations of fluid–solid interactions in arteries. Comput Methods Appl Mech Eng 196: 2070–3078

    Article  MathSciNet  Google Scholar 

  10. Figueroa CA, Vignon-Clementel IE, Jansen KE, Hughes TJR, Taylor CA (2006) A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput Meth Appl Mech Eng 195: 5685–5706

    Article  MATH  MathSciNet  Google Scholar 

  11. Raghavan ML, Vorp DA (2000) Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability. J Biomech 33(4): 475–482

    Article  Google Scholar 

  12. DI Martino ES, Vorp D (2003) Effect of variation in intraluminal thrombus constitutive properties on abdominal aortic aneurysm wall stress. Ann Biomed Eng 31: 804–809

    Article  Google Scholar 

  13. Leung JH, Wright AR, Cheshire N, Crane J, Thom SA, Hughes AD, Xu Y (2006) Fluid structure interaction of patient specific abdominal aortic aneurysms: a comparison with solid stress models. Biomed Eng 5 (online)

  14. Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid–structure interaction analysis with applications to arterial blood flow. Comput Mech 38: 310–322

    Article  MathSciNet  MATH  Google Scholar 

  15. Tezduyar TE, Sathe S, Cragin T, Nanna B, Conklin BS, Pausewang J, Schwaab M (2007) Modeling of fluid–structure interactions with the space–time finite elements: Arterial fluid mechanics. Int J Numer Meth Fluids 54: 901–922

    Article  MATH  MathSciNet  Google Scholar 

  16. Tezduyar TE, Sathe S, Schwaab M, Conklin BS (2008) Arterial fluid mechanics modeling with the stabilized space–time fluid–structure interaction technique. Int J Numer Meth Fluids 57: 601–629. doi:10.1002/fld.1633

    Article  MATH  MathSciNet  Google Scholar 

  17. Holzapfel GA, Gasser TC (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast 61: 1–48

    Article  MATH  MathSciNet  Google Scholar 

  18. Humphrey JD, Na S (2002) Elastodynamics and arterial wall stress. Ann Biomed Eng 30: 509–523

    Article  Google Scholar 

  19. Gasser TC, Holzapfel GA (2007) Finite element modeling of balloon angioplasty by considering overstretch of remnant non-diseased tissues in lesions. Comput Mech 40: 47–60

    Article  MATH  Google Scholar 

  20. Hariton I, deBotton G, Gasser TC, Holzapfel GA (2005) How to incorporate collagen fibers orientations in an arterial bifurcation? In: Proceedings of 3rd IASTED international conference on biomechanics, Benidorm, Spain, September

  21. Williamson SD, Lam Y, Younis HF, Huang H, Patel S, Kaazempur-Mofrad MR, Kamm RD (2003) On the sensitivity of wall stresses in diseased arteries to variable material properties. J Biomech Eng 125: 147–155

    Article  Google Scholar 

  22. Karino T, Takeuchi S, Kobayashi N, Motomiya M, Mabuchi S (1993) Fluid dynamics of cerebrovascular disease (in Japanese). Neurosurgeons 12: 15–24

    Google Scholar 

  23. Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28: 1–44

    Article  MATH  MathSciNet  Google Scholar 

  24. Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces – the deforming-spatial-domain/space–time procedure: I. The concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94(3): 339–351

    Article  MATH  MathSciNet  Google Scholar 

  25. Tezduyar TE, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space–time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94(3): 353–371

    Article  MATH  MathSciNet  Google Scholar 

  26. Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43: 555–575

    Article  MATH  MathSciNet  Google Scholar 

  27. Hughes TJR, Brooks AN (1979) A multi-dimensional upwind scheme with no crosswind diffusion. In: Hughes TJR (ed) Finite element methods for convection dominated flows, AMD, vol 34, ASME, New York, pp 19–35

  28. Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32: 199–259

    Article  MATH  MathSciNet  Google Scholar 

  29. Tezduyar TE, Mittal S, Ray SE, Shih R (1992) Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements. Comput Methods Appl Mech Eng 95: 221–242

    Article  MATH  Google Scholar 

  30. Hughes TJR, Franca LP, Balestra M (1986) A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuška–Brezzi condition: a stable Petrov–Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput Methods Appl Mech Eng 59: 85–99

    Article  MATH  MathSciNet  Google Scholar 

  31. Tezduyar T, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite-element computation of 3D flows. Computer 26(10): 27–36

    Article  Google Scholar 

  32. Tezduyar TE, Aliabadi SK, Behr M, Mittal S (1994) Massively parallel finite element simulation of compressible and incompressible flows. Comput Methods Appl Mech Eng 119: 157–177

    Article  MATH  Google Scholar 

  33. Tezduyar T, Aliabadi S, Behr M, Johnson A, Kalro V, Litke M (1996) Flow simulation and high performance computing. Comput Mech 18: 397–412

    Article  MATH  Google Scholar 

  34. Tezduyar TE (1999) CFD methods for three-dimensional computation of complex flow problems. J Wind Eng Ind Aerodyn 81: 97–116

    Article  Google Scholar 

  35. Tezduyar TE (2001) Finite element methods for flow problems with moving boundaries and interfaces. Arch Comput Methods Eng 8: 83–130

    Article  MATH  Google Scholar 

  36. Tezduyar TE (2006) Interface-tracking and interface-capturing techniques for finite element computation of moving boundaries and interfaces. Comput Methods Appl Mech Eng 195: 2983– 3000

    Article  MATH  MathSciNet  Google Scholar 

  37. Tezduyar TE (2007) Finite elements in fluids: stabilized formulations and moving boundaries and interfaces. Comput Fluids 36: 191–206

    Article  MathSciNet  Google Scholar 

  38. Tezduyar TE (2007) Finite elements in fluids: special methods and enhanced solution techniques. Comput Fluids 36: 207–223

    Article  MathSciNet  Google Scholar 

  39. Mittal S, Tezduyar TE (1995) Parallel finite element simulation of 3D incompressible flows—fluid–structure interactions. Int J Numer Methods Fluids 21: 933–953

    Article  MATH  Google Scholar 

  40. Kalro V, Tezduyar TE (2000) A parallel 3D computational method for fluid–structure interactions in parachute systems. Comput Methods Appl Mech Eng 190: 321–332

    Article  MATH  Google Scholar 

  41. Tezduyar T, Osawa Y (2001) Fluid–structure interactions of a parachute crossing the far wake of an aircraft. Comput Methods Appl Mech Eng 191: 717–726

    Article  MATH  Google Scholar 

  42. Stein KR, Benney RJ, Tezduyar TE, Leonard JW, Accorsi ML (2001) Fluid–structure interactions of a round parachute: modeling and simulation techniques. J Aircraft 38: 800–808

    Article  Google Scholar 

  43. Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space–time finite element techniques for computation of fluid–structure interactions. Comput Methods Appl Mech Eng 195: 2002–2027

    Article  MATH  MathSciNet  Google Scholar 

  44. Tezduyar TE, Sathe S, Stein K (2006) Solution techniques for the fully-discretized equations in computation of fluid–structure interactions with the space–time formulations. Comput Methods Appl Mech Eng 195: 5743–5753

    Article  MATH  MathSciNet  Google Scholar 

  45. Tezduyar TE, Sathe S (2007) Modeling of fluid–structure interactions with the space–time finite elements: solution techniques. Int J Numer Methods Fluids 54: 855–900

    Article  MATH  MathSciNet  Google Scholar 

  46. Hisada T, Noguchi H (1995) Fundamentals and applications of nonlinear finite element method (in Japanese). Maruzen, Tokyo

    Google Scholar 

  47. Delfino A, Stergiopulos N, Moore JE Jr, Meister JJ (1997) Residual strain effects on the stress field in a thick wall finite element model of the human carotid bifurcation. J Biomech 30: 777–786

    Article  Google Scholar 

  48. Tezduyar TE (2004) Finite element methods for fluid dynamics with moving boundaries and interfaces. In: Stein E, De Borst R, Hughes TJR (eds) Encyclopedia of computational mechanics, vol 3, Fluids, Chap 17, Wiley, New York

  49. Tezduyar TE, Behr M, Mittal S, Johnson AA (1992) Computation of unsteady incompressible flows with the finite element methods—space–time formulations, iterative strategies and massively parallel implementations. In: New methods in transient analysis, PVP-vol 246/AMD-vol 143, ASME, New York, pp 7–24

  50. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Computer modeling of cardiovascular fluid–structure interactions with the deforming-spatial-domain/stabilized space–time formulation. Comput Methods Appl Mech Eng 195: 1885–1895

    Article  MATH  MathSciNet  Google Scholar 

  51. McDonald DA (1974) Blood flow in arteries, 2nd edn. Edward Arnold, London

    Google Scholar 

  52. Hayashi K, Handa H, Nagasawa S, Okumura A, Moritake K (1980) Stiffness and elastic behavior of human intracranial and extracranial arteries. J Biomech 13: 175–184

    Article  Google Scholar 

  53. Womersley JR (1955) Method for the calculation of velocity, rate of flow and viscos drag in arteries when the pressure gradient is known. J Physiol 127: 553–563

    Google Scholar 

  54. Ujiie H, Tamano Y, Sasaki K, Hori T (2001) Is the aspect ratio a reliable index for predicting the rupture of a saccular aneurysm. Neurosurgery 48(3): 495–503

    Article  Google Scholar 

  55. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2007) Numerical investigation of the effect of hypertensive blood pressure on cerebral aneurysm—dependence of the effect on the aneurysm shape. Int J Numer Methods Fluids 54: 995–1009

    Article  MATH  MathSciNet  Google Scholar 

  56. Holzapfel GA (2003) Biomechanics of Soft Tissue in Cardiovascular Systems, chapter Structural and numerical models for the (visco)elastic response of arterial walls with residual stresses. Number 141 in CISM courses and lectures. Springer, New York

  57. Raghavan ML, Trivedi S, Nagaraj A, McPherson DD, Chandran KB (2004) Three-dimensional finite element analysis of residual stress in arteries. Ann Biomed Eng 32: 257–263

    Article  Google Scholar 

  58. Malek AM, Alper SL, Izumo S (1999) Hemodynamic shear stress and its role in atherosclerosis. J Am Med Assoc 282: 2035–2042

    Article  Google Scholar 

  59. Abruzzo T, Shengelaia GG, Dawson RC III, Owens DS, Cawley CM, Gravanis MB (1998) Histologic and morphologic comparison of experimental aneurysms with human intracranial aneurysm. Am J Neuroradiol 19: 1309–1314

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryo Torii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torii, R., Oshima, M., Kobayashi, T. et al. Fluid–structure interaction modeling of a patient-specific cerebral aneurysm: influence of structural modeling. Comput Mech 43, 151–159 (2008). https://doi.org/10.1007/s00466-008-0325-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-008-0325-8

Keywords

Navigation