Skip to main content
Log in

Spinal loads after osteoporotic vertebral fractures treated by vertebroplasty or kyphoplasty

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Vertebroplasty and kyphoplasty are routine treatments for compression fractures of vertebral bodies. A wedge-shaped compression fracture shifts the centre of gravity of the upper body anteriorly and generally, this shift can be compensated in the spine and in the hips. However, it is still unclear how a wedge-shaped compression fracture of a vertebra increases forces in the trunk muscle and the intradiscal pressure in the adjacent discs. A nonlinear finite element model of the lumbar spine was used to estimate the force in the trunk muscle, the intradiscal pressure and the stresses in the endplates in the intact spine, and after vertebroplasty and kyphoplasty treatment. In this study, kyphoplasty represents a treatment with nearly full fracture reduction and vertebroplasty one without restoration of kyphotic angle although in reality kyphoplasty does not guarantee fracture reduction. If no compensation of upper body shift is assumed, the force in the erector spine increases by about 200% for the vertebroplasty but by only 55% for the kyphoplasty compared to the intact spine. Intradiscal pressure increases by about 60 and 20% for the vertebroplasty and kyphoplasty, respectively. In contrast, with shift compensation of the upper body, the increase in muscle force is much lower and increase in intradiscal pressure is only about 20 and 7.5% for the vertebroplasty and kyphoplasty, respectively. Augmentation of the vertebral body with bone cement has a much smaller effect on intradiscal pressure. The increase in that case is only about 2.4% for the intact as well as for the fractured vertebra. Moreover, the effect of upper body shift after a wedge-shaped vertebral body fracture on intradiscal pressure and thus on spinal load is much more pronounced than that of stiffness increase due to cement infiltration. Maximum von Mises stress in the endplates of all lumbar vertebrae is also higher after kyphoplasty and vertebroplasty. Cement augmentation has only a minor effect on endplate stresses in the unfractured vertebrae. The advantages of kyphoplasty found in this study will be apparent only if nearly full fracture reduction is achieved. Otherwise, differences between kyphoplasty and vertebroplasty become small or vanish. Our results suggest that vertebral body fractures in the adjacent vertebrae after vertebroplasty or kyphoplasty are not induced by the elevated stiffness of the treated vertebra, but instead the anterior shift of the upper body is the dominating factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Baroud G, Nemes J, Heini P, Steffen T (2003) Load shift of the intervertebral disc after a vertebroplasty: a finite-element study. Eur Spine J 12:421–426

    Article  PubMed  CAS  Google Scholar 

  2. Belkoff SM, Mathis JM, Jasper LE, Deramond H (2001) The biomechanics of vertebroplasty. The effect of cement volume on mechanical behavior. Spine 26:1537–1541

    Article  PubMed  CAS  Google Scholar 

  3. Berlemann U, Ferguson SJ, Nolte LP, Heini PF (2002) Adjacent vertebral failure after vertebroplasty. A biomechanical investigation. J Bone Joint Surg Br 84:748–752

    Article  PubMed  CAS  Google Scholar 

  4. Davis JW, Grove JS, Wasnich RD, Ross PD (1999) Spatial relationships between prevalent and incident spine fractures. Bone 24:261–264

    Article  PubMed  CAS  Google Scholar 

  5. Garfin SR, Yuan HA, Reiley MA (2001) New technologies in spine: kyphoplasty and vertebroplasty for the treatment of painful osteoporotic compression fractures. Spine 26:1511–1515

    Article  PubMed  CAS  Google Scholar 

  6. Goel VK, Ramirez SA, Kong W, Gilbertson LG (1995) Cancellous bone Young’s modulus variation within the vertebral body of a ligamentous lumbar spine–application of bone adaptive remodeling concepts. J Biomech Eng 117:266–271

    Article  PubMed  CAS  Google Scholar 

  7. Grados F, Depriester C, Cayrolle G, Hardy N, Deramond H, Fardellone P (2000) Long-term observations of vertebral osteoporotic fractures treated by percutaneous vertebroplasty. Rheumatology (Oxford) 39:1410–1414

    Article  CAS  Google Scholar 

  8. Heini PF, Orler R (2004) Kyphoplasty for treatment of osteoporotic vertebral fractures. Eur Spine J 13:184–192

    Article  PubMed  Google Scholar 

  9. Jensen ME, Dion JE (2000) Percutaneous vertebroplasty in the treatment of osteoporotic compression fractures. Neuroimaging Clin North Am 10:547–568

    CAS  Google Scholar 

  10. Kim SH, Kang HS, Choi JA, Ahn JM (2004) Risk factors of new compression fractures in adjacent vertebrae after percutaneous vertebroplasty. Acta Radiol 45:440–445

    Article  PubMed  CAS  Google Scholar 

  11. Ledlie JT, Renfro M (2003) Balloon kyphoplasty: one-year outcomes in vertebral body height restoration, chronic pain, and activity levels. J Neurosurg Spine 98:36–42

    Article  Google Scholar 

  12. Liebschner MA, Rosenberg WS, Keaveny TM (2001) Effects of bone cement volume and distribution on vertebral stiffness after vertebroplasty. Spine 26:1547–1554

    Article  PubMed  CAS  Google Scholar 

  13. Lin EP, Ekholm S, Hiwatashi A, Westesson PL (2004) Vertebroplasty: cement leakage into the disc increases the risk of new fracture of adjacent vertebral body. AJNR Am J Neuroradiol 25:175–180

    PubMed  Google Scholar 

  14. Molloy S, Mathis JM, Belkoff SM (2003) The effect of vertebral body percentage fill on mechanical behavior during percutaneous vertebroplasty. Spine 28:1549–1554

    Article  PubMed  Google Scholar 

  15. Patwardhan AG, Havey RM, Meade KP, Lee B, Dunlap B (1999) A follower load increases the load-carrying capacity of the lumbar spine in compression. Spine 24:1003–1009

    Article  PubMed  CAS  Google Scholar 

  16. Phillips FM, Todd Wetzel F, Lieberman I, Campbell-Hupp M (2002) An in vivo comparison of the potential for extravertebral cement leak after vertebroplasty and kyphoplasty. Spine 27:2173–2178

    Article  PubMed  Google Scholar 

  17. Polikeit A, Nolte LP, Ferguson SJ (2003) The effect of cement augmentation on the load transfer in an osteoporotic functional spinal unit: finite-element analysis. Spine 28:991–996

    Article  PubMed  Google Scholar 

  18. Pollintine P, Dolan P, Tobias JH, Adams MA (2004) Intervertebral disc degeneration can lead to “stress-shielding” of the anterior vertebral body: a cause of osteoporotic vertebral fracture? Spine 29:774–782

    Article  PubMed  Google Scholar 

  19. Rohlmann A, Bauer L, Zander T, Bergmann G (2005) Determination of trunk muscle forces for flexion and extension by using a validated finite element model of the lumbar spine and measured in vivo data. J Biomech (in press)

  20. Rohlmann A, Neller S, Claes L, Bergmann G, Wilke H-J (2001) Influence of a follower load on intradiscal pressure and intersegmental rotation of the lumbar spine. Spine 26:E557–E561

    Article  PubMed  CAS  Google Scholar 

  21. Rohlmann A, Zander T, Bergmann G (2005) Comparison of the biomechanical effects of posterior and anterior spine-stabilizing implants. Eur Spine J 14:445–453

    Article  PubMed  Google Scholar 

  22. Rohlmann A, Zander T, Bergmann G (2005) Effect of total disc replacement with ProDisc on the biomechanical behavior of the lumbar spine. Spine 30:738–743

    Article  PubMed  Google Scholar 

  23. Rohlmann A, Zander T, Jony, Weber U, Bergmann G (2005) Einfluss der Wirbelkörpersteifigkeit vor und nach Vertebroplastik auf den intradiskalen Druck.. Biomed Tech (Berl) 50:148–152

    Article  CAS  Google Scholar 

  24. Rohlmann A, Zilch H, Bergmann G, Kölbel R (1980) Material properties of femoral cancellous bone in axial loading. Part I: time independent properties. Arch Orthop Trauma Surg 97:95–102

    Article  PubMed  CAS  Google Scholar 

  25. Shirazi-Adl A, Ahmed AM, Shrivastava SC (1986) Mechanical response of a lumbar motion segment in axial torque alone and combined with compression. Spine 11:914–927

    Article  PubMed  CAS  Google Scholar 

  26. Shirazi-Adl SA, Shrivastava SC, Ahmed AM (1984) Stress analysis of the lumbar disc-body unit in compression. A three-dimensional nonlinear finite element study. Spine 9:120–134

    Article  PubMed  CAS  Google Scholar 

  27. Sun K, Liebschner MA (2004) Biomechanics of prophylactic vertebral reinforcement. Spine 29:1428–1435

    Article  PubMed  Google Scholar 

  28. Villarraga LM, Cripton PA, Bellezza AJ, Berlemann U, Kurtz SM, Edidin AA (2004) Knochen und Knochen-Zement-Belastungen in der thorakolumbalen Wirbelsäule nach Kyphoplastik. Eine Finite-Element-Studie. Orthopade 33:48–55

    Article  PubMed  Google Scholar 

  29. White AA III, Panjabi MM (1990) Clinical biomechanics of the spine, 2nd edn. J.B.Lippincott Company, Philadelphia

    Google Scholar 

  30. Wilke H, Neef P, Hinz B, Seidel H, Claes L (2001) Intradiscal pressure together with anthropometric data—a data set for the validation of models. Clin Biomech (Bristol, Avon) 16:S111–S126

    Article  Google Scholar 

  31. Wilke HJ, Rohlmann A, Neller S, Graichen F, Claes L, Bergmann G (2003) ISSLS Prize Winner: a novel approach to determine trunk muscle forces during flexion and extension: a comparison of data from an in vitro experiment and in vivo measurements. Spine 28:2585–2593

    Article  PubMed  Google Scholar 

  32. Zander T, Rohlmann A, Calisse J, Bergmann G (2001) Estimation of muscle forces in the lumbar spine during upper-body inclination. Clin Biomech (Bristol, Avon) 16:S73–S80

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (Ro 581/17-1). Finite element analyses were performed at the Norddeutscher Verbund für Hoch- and Höchstleistungsrechnen (HLRN). The authors thank Jony for his support in the finite element calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonius Rohlmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rohlmann, A., Zander, T. & Bergmann, G. Spinal loads after osteoporotic vertebral fractures treated by vertebroplasty or kyphoplasty. Eur Spine J 15, 1255–1264 (2006). https://doi.org/10.1007/s00586-005-0018-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-005-0018-3

Keywords

Navigation