Skip to main content

Advertisement

Log in

Metal-related artifacts in instrumented spine. Techniques for reducing artifacts in CT and MRI: state of the art

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

The projectional nature of radiogram limits its amount of information about the instrumented spine. MRI and CT imaging can be more helpful, using cross-sectional view. However, the presence of metal-related artifacts at both conventional CT and MRI imaging can obscure relevant anatomy and disease. We reviewed the literature about overcoming artifacts from metallic orthopaedic implants at high-field strength MRI imaging and multi-detector CT. The evolution of multichannel CT has made available new techniques that can help minimizing the severe beam-hardening artifacts. The presence of artifacts at CT from metal hardware is related to image reconstruction algorithm (filter), tube current (in mA), X-ray kilovolt peak, pitch, hardware composition, geometry (shape), and location. MRI imaging has been used safely in patients with orthopaedic metallic implants because most of these implants do not have ferromagnetic properties and have been fixed into position. However, on MRI imaging metallic implants may produce geometric distortion, the so-called susceptibility artifact. In conclusion, although 140 kV and high milliamperage second exposures are recommended for imaging patients with hardware, caution should always be exercised, particularly in children, young adults, and patients undergoing multiple examinations. MRI artifacts can be minimized by positioning optimally and correctly the examined anatomy part with metallic implants in the magnet and by choosing fast spin-echo sequences, and in some cases also STIR sequences, with an anterior to posterior frequency-encoding direction and the smallest voxel size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. White LM, Buckwalter KA (2002) Technical considerations: CT and MR imaging in the postoperative orthopedic patient. Semin Musculoskelet Radiol 6:5–17

    Article  PubMed  Google Scholar 

  2. Barrett JF, Keat N (2004) Artifacts in CT: recognition and avoidance. RadioGraphics 24:1679–1691

    Article  PubMed  Google Scholar 

  3. Yazdi M, Gingras L, Beaulieu L (2005) An adaptive approach to metal artifact reduction in helical computed tomography for radiation therapy treatment planning: experimental and clinical studies. Int J Radiat Oncol Biol Phys 62:1224–1231

    PubMed  Google Scholar 

  4. Lee MF, Kim S, Lee SA et al (2007) Overcoming artifacts from metallic orthopedic implants at high-field-strength mr imaging and multidetector CT. RadioGraphics 27:791–803

    Article  PubMed  Google Scholar 

  5. Douglas-Akinwande AC, Buckwalter KA, Rydberg J et al (2006) Multichannel CT: evaluating the spine in postoperative patients with orthopaedic hardware. RadioGraphics 26:S97–S110

    Article  PubMed  Google Scholar 

  6. Robertson DD, Weiss PJ, Fishman EK et al (1988) Evaluation of CT techniques for reducing artifacts in the presence of metallic orthopaedic implants. J Comput Assist Tomogr 12:236–241

    Article  PubMed  CAS  Google Scholar 

  7. White LM, Buckwalter KA (2002) Technical considerations: CT and MR imaging in the postoperative orthopedic patient. Semin Musculoskelet Radiol 6:5–17

    Article  PubMed  Google Scholar 

  8. Robertson DD, Magid D, Poss R, Fishman EK et al (1989) Enhanced computed tomographic techniques for the evaluation of total hip arthroplasty. J Arthroplasty 4:271–276

    Article  PubMed  CAS  Google Scholar 

  9. Haramati N, Staron RB, Mazel-Sperling K et al (1994) CT scans through metal scanning technique versus hardware composition. Comput Med Imaging Graph 18:429–434

    Article  PubMed  CAS  Google Scholar 

  10. Wang JC, Yu WD, Sandhu HS et al (1998) A comparison of magnetic resonance and computed tomographic image quality after the implantation of tantalum and titanium spinal instrumentation. Spine 23:1684–1688

    Article  PubMed  CAS  Google Scholar 

  11. Ohashi K, El-Khoury GY, Bennett DL et al (2005) Orthopedic hardware complication diagnosed with multi-detector row CT. Radiology 237:570–577

    Article  PubMed  Google Scholar 

  12. Lorenzen M, Wedegartner U, Weber C et al (2005) Clinical relevance of multislice CT of the spine after osteosynthesis. Rofo 177(11):1540–1544

    PubMed  CAS  Google Scholar 

  13. Schroder RJ, Noor J, Pflugmacher R et al (2004) Short-term CT findings after osteosynthesis of fractures of the vertebral spine. Rofo 176(5):694–703

    PubMed  Google Scholar 

  14. Viano AM, Gronemeyer SA, Haliloglu M et al (2000) Improved MR imaging for patients with metallic implants. Magn Reson Imaging 18:287–295

    Article  PubMed  CAS  Google Scholar 

  15. Ludeke KM, Roschmann P, Tischler R (1985) Susceptibility artefacts in NMR imaging. Magn Reson Imaging 3:329–343

    Article  PubMed  CAS  Google Scholar 

  16. Harris CA, White LM (2006) Metal artifact reduction in musculoskeletal magnetic resonance imaging. Orthop Clin N Am 37:349–359

    Article  Google Scholar 

  17. Hassfeld S (2005) Artefacts in magnetic resonance imaging caused by dental material. MAGMA 18:103–111

    Article  PubMed  Google Scholar 

  18. Suh JS, Jeong EK, Shin KH et al (1998) Minimizing artifacts caused by metallic implants at MR imaging: experimental and clinical studies. AJR Am J Roentgenol 171:1207–1213

    PubMed  CAS  Google Scholar 

  19. Ganapathi M, Joseph J, Savage R et al (2002) MRI susceptibility artefacts related to scaphoid screws: effect of screw type, screw orientation and imaging parameters. J Hand Surg Br 27:165–170

    Article  PubMed  CAS  Google Scholar 

  20. Guermazi A, Miaux Y, Zaim S et al (2003) Metallic artefacts in MR imaging: effects of main field orientation and strength. Clin Radiol 58:322–328

    Article  PubMed  CAS  Google Scholar 

  21. Mueller PR, Stark DD, Simeone JF et al (1986) MR guided aspiration biopsy: needle design and clinical trials. Radiology 161:605–609

    PubMed  CAS  Google Scholar 

  22. Wendt RE, Wicott MR, Nitz W et al (1988) MR imaging of susceptibility-induced magnetic field inhomogeneities. Radiology 168:837–841

    PubMed  Google Scholar 

  23. White LM, Kim JK, Mehta M et al (2000) Complication of total hip arthroplasty: MR imaging initial experience. Radiology 215:254–262

    PubMed  CAS  Google Scholar 

  24. Port JD, Pomper MG (2000) Quantification and minimization of magnetic susceptibility artifacts on GRE images. J Comput Assist Tomogr 23:958–964

    Article  Google Scholar 

  25. Peterslige CA, Lewin JS, Duerk JL et al (1996) Optimizing imaging parameters for MR evaluation of the spine with titanium pedicle screws. AJR Am J Roentgenol 166:1213–1218

    Google Scholar 

  26. Bakker CJG, Bhagwandien R, Moerland MA et al (1993) Susceptibility artifacts in 2DFT spin-echo imaging: the cylinder model revisited. Magn Reson Imaging 11:539–548

    Article  PubMed  CAS  Google Scholar 

  27. Schenck JF (1996) The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med Phys 23:815–850

    Article  PubMed  CAS  Google Scholar 

  28. Frazzini VI, Kagetsu Nk, Johnson CE et al (1997) Internally stabilized spine: optimal choice of frequency-encoding gradient direction during MR imaging minimizes susceptibility artifact from titanium vertebral body screws. Radiology 204:268–272

    PubMed  CAS  Google Scholar 

  29. Tartaglino LM, Flanders AE, Vitinski S et al (1994) Metallic artifacts on MR images of the postoperative spine: reduction with fast spin-echo techniques. Radiology 190:565–569

    PubMed  CAS  Google Scholar 

  30. Hilfiker P, Zanetti M, Debatin JF et al (1995) Fast spinecho inversion-recovery imaging versus fast spin echo imaging in bone marrow abnormalities. Invest Radiol 30:110–114

    Article  PubMed  CAS  Google Scholar 

  31. Czerny C, Krestan C, Imhof H et al (1999) Magnetic resonance imaging of the postoperative hip. Top Magn Reson Imag 10:214–220

    Article  CAS  Google Scholar 

  32. Mitchell DG, Cohen MS (2000) Transverse magnetization and T2 contrast. In: Mitchell DG, Cohen MS (eds) MRI principles, 2nd edn. Springer, New York, pp 35–47

    Google Scholar 

  33. Olsen RV, Munk PL, Lee MJ et al (2000) Metal artifact reduction sequence: early clinical applications. Radiographics 20:699–712

    PubMed  CAS  Google Scholar 

  34. Chang SD, Lee MJ, Munk PL et al (2001) MRI of spinal hardware: comparison of conventional T1-weighted sequence with a new metal artifact reduction sequence. Skeletal Radiol 20:213–218

    Article  Google Scholar 

  35. Lee MJ, Janzen DL, Munk PL et al (2001) Quantitative assessment of an MR technique for reducing metal artifact: application to spin-echo imaging in a phantom. Skeletal Radiol 30:398–401

    Article  PubMed  CAS  Google Scholar 

  36. Potter HG, Nestor BJ, Bryan J et al (2004) Magnetic resonance imaging after total hip arthroplasty: evaluation of periprosthetic soft tissue. J Bone Joint Surg Am 86:1947–1954

    PubMed  Google Scholar 

  37. Suh JS, Jeong EK, Shin KH et al (1998) Minimizing artifacts caused by metallic implants at MR imaging: experimental and clinical studies. AJR Am J Roentgenol 171:1207–1213

    PubMed  CAS  Google Scholar 

Download references

Conflict of interest statement

None of the authors has any potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Zerbi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stradiotti, P., Curti, A., Castellazzi, G. et al. Metal-related artifacts in instrumented spine. Techniques for reducing artifacts in CT and MRI: state of the art. Eur Spine J 18 (Suppl 1), 102–108 (2009). https://doi.org/10.1007/s00586-009-0998-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-009-0998-5

Keywords

Navigation