Skip to main content
Log in

Clinical evaluation of bone-subtraction CT angiography (BSCTA) in head and neck imaging

  • Neuro
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Fifty-one patients were examined with bone subtraction CT angiography (BSCTA). Data were acquired on 4-and 64-slice spiral CT systems. The post-processing method is based on fully automatic registration of non-enhanced and contrast-enhanced CT data and subsequent selective bone removal. Vascular structures and brain tissue are retained with the original CTA noise level. Image quality and delineation of the pathologic process were assessed and artifacts introduced by the bone removal process recorded. The bone subtraction algorithm worked successfully in all examinations. The processing time was 6 min on average. Image quality was rated excellent in 20 (39%), good in 26 (51%) and acceptable in 5 (10%) patients. Ophthalmic arteries were visible in 12 (24%) patients bilaterally, in 13 (25%) patients unilaterally and in 26 (51%) patients at least at the origin. BSCTA improved visualization of the infraclinoid ICA and the vertebral arteries. The depiction of stenosis of the extracranial ICA and supraclinoid aneurysms was not significantly improved. In patients with suspicion of sinus thrombosis, BSCTA and conventional CTA yielded similar results. To conclude, BSCTA improves the visualization of vessels with close contact to bone and can improve the diagnostic accuracy and therapy planning of infraclinoid aneurysms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Thurnher MM, Castillo M (2005) Imaging in acute stroke. Eur Radiol 15:408–415

    PubMed  Google Scholar 

  2. Esteban JM, Cervera V (2004) Perfusion CT and angio CT in the assessment of acute stroke. Neuroradiology 46:705–715

    CAS  PubMed  Google Scholar 

  3. Tomandl BF, Klotz E, Handschu R, Stemper B, Reinhardt F, Huk WJ, Eberhardt KE, Fateh-Moghadam S (2003) Comprehensive imaging of ischemic stroke with multisection CT. Radiographics 23:565–592

    PubMed  Google Scholar 

  4. Anderson GB, Steinke DE, Petruk KC, Ashforth R, Findlay JM (1999) Computed tomographic angiography versus digital subtraction angiography for the diagnosis and early treatment of ruptured intracranial aneurysms. Neurosurgery 45:1315–1320; discussion 1320–1312

    CAS  PubMed  Google Scholar 

  5. Villablanca JP, Jahan R, Hooshi P, Lim S, Duckwiler G, Patel A, Sayre J, Martin N, Frazee J, Bentson J, Vinuela F (2002) Detection and characterization of very small cerebral aneurysms by using 2D and 3D helical CT angiography. AJNR Am J Neuroradiol 23:1187–1198

    PubMed  Google Scholar 

  6. Dammert S, Krings T, Moller-Hartmann W, Ueffing E, Hans FJ, Willmes K, Mull M, Thron A (2004) Detection of intracranial aneurysms with multislice CT: comparison with conventional angiography. Neuroradiology 46:427–434

    CAS  PubMed  Google Scholar 

  7. Kato Y, Nair S, Sano H, Sanjaykumar MS, Katada K, Hayakawa M, Kanno T (2002) Multi-slice 3D-CTA- an improvement over single slice helical CTA for cerebral aneurysms. Acta Neurochir (Wien) 144:715–722

    CAS  Google Scholar 

  8. Lell M, Tomandl BF, Anders K, Baum U, Nkenke E (2005) Computed tomography angiography versus digital subtraction angiography in vascular mapping for planning of microsurgical reconstruction of the mandible. Eur Radiol 15:1514–1520

    PubMed  Google Scholar 

  9. Zhang Z, Berg M, Ikonen A, Kononen M, Kalviainen R, Manninen H, Vanninen R (2005) Carotid stenosis degree in CT angiography: assessment based on luminal area versus luminal diameter measurements. Eur Radiol 15(11) DOI 10.1007/s00330-005-2801-2

  10. Gorzer H, Heimberger K, Schindler E (1994) Spiral CT angiography with digital subtraction of extra-and intracranial vessels. J Comput Assist Tomogr 18:839–841

    Article  CAS  PubMed  Google Scholar 

  11. Venema HW, Hulsmans FJH, den Heeten GJ (2001) CT angiography of the circle of Willis and intracranial internal carotid arteries: maximum intensity projection with matched mask bone elimination-feasibility study. Radiology 218:893–898

    CAS  PubMed  Google Scholar 

  12. Pluim JP, Maintz JB, Viergever MA (2003) Mutual-information-based registration of medical images: a survey. IEEE Trans Med Imaging 22:986–1004

    PubMed  Google Scholar 

  13. Hirai T, Korogi Y, Ono K, Murata Y, Takahashi M, Suginohara K, Uemura S (2001) Maximum stenosis of extracranial internal carotid artery: effect of luminal morphology on stenosis measurement by using CT angiography and conventional DSA. Radiology 221:802–809

    CAS  PubMed  Google Scholar 

  14. Chappell ET, Moure FC, Good MC (2003) Comparison of computed tomographic angiography with digital subtraction angiography in the diagnosis of cerebral aneurysms: a meta-analysis. Neurosurgery 52:624–631; discussion 630–621

    PubMed  Google Scholar 

  15. Farres MT, Grabenwoger F, Magometschnig H, Trattnig S, Heimberger K, Lammer J (1996) Spiral CT angiography: study of stenoses and calcification at the origin of the vertebral artery. Neuroradiology 38:738–743

    CAS  PubMed  Google Scholar 

  16. Hoh BL, Cheung AC, Rabinov JD, Pryor JC, Carter BS, Ogilvy CS (2004) Results of a prospective protocol of computed tomographic angiography in place of catheter angiography as the only diagnostic and pretreatment planning study for cerebral aneurysms by a combined neurovascular team. Neurosurgery 54:1329–1340; discussion 1340–1322

    PubMed  Google Scholar 

  17. Hollingworth W, Nathens AB, Kanne JP, Crandall ML, Crummy TA, Hallam DK, Wang MC, Jarvik JG (2003) The diagnostic accuracy of computed tomography angiography for traumatic or atherosclerotic lesions of the carotid and vertebral arteries: a systematic review. Eur J Radiol 48:88–102

    PubMed  Google Scholar 

  18. Koelemay MJ, Nederkoorn PJ, Reitsma JB, Majoie CB (2004) Systematic review of computed tomographic angiography for assessment of carotid artery disease. Stroke 35:2306–2312

    PubMed  Google Scholar 

  19. Kouskouras C, Charitanti A, Giavroglou C, Foroglou N, Selviaridis P, Kontopoulos V, Dimitriadis AS (2004) Intracranial aneurysms: evaluation using CTA and MRA. Correlation with DSA and intraoperative findings. Neuroradiology 46(10):842–850

    CAS  PubMed  Google Scholar 

  20. Piotin M, Gailloud P, Bidaut L, Mandai S, Muster M, Moret J, Rufenacht DA (2003) CT angiography, MR angiography and rotational digital subtraction angiography for volumetric assessment of intracranial aneurysms. An experimental study. Neuroradiology 45:404–409

    CAS  PubMed  Google Scholar 

  21. Zhang Z, Berg MH, Ikonen AE, Vanninen RL, Manninen HI (2004) Carotid artery stenosis: reproducibility of automated 3D CT angiography analysis method. Eur Radiol 14:665–672

    PubMed  Google Scholar 

  22. Schwartz RB, Tice HM, Hooten SM, Hsu L, Stieg PE (1994) Evaluation of cerebral aneurysms with helical CT: correlation with conventional angiography and MR angiography. Radiology 192:717–722

    CAS  PubMed  Google Scholar 

  23. Majoie CB, van Straten M, Venema HW, den Heeten GJ (2004) Multisection CT venography of the dural sinuses and cerebral veins by using matched mask bone elimination. AJNR Am J Neuroradiol 25:787–791

    PubMed  Google Scholar 

  24. van Straten M, Venema HW, Streekstra GJ, Majoie CB, den Heeten GJ, Grimbergen CA (2004) Removal of bone in CT angiography of the cervical arteries by piecewise matched mask bone elimination. Med Phys 31:2924–2933

    PubMed  Google Scholar 

  25. Jayakrishnan VK, White PM, Aitken D, Crane P, McMahon AD, Teasdale EM (2003) Subtraction helical CT angiography of intra-and extracranial vessels: technical considerations and preliminary experience. AJNR Am J Neuroradiol 24:451–455

    PubMed  Google Scholar 

  26. Tomandl BF, Kostner NC, Schempershofe M, Huk WJ, Strauss C, Anker L, Hastreiter P (2004) CT angiography of intracranial aneurysms: a focus on postprocessing. Radiographics 24:637–655

    PubMed  Google Scholar 

  27. Tomandl BF, Hastreiter P, Iserhardt-Bauer S, Kostner NC, Schempershofe M, Huk WJ, Ertl T, Strauss C, Romstock J (2003) Standardized evaluation of CT angiography with remote generation of 3D video sequences for the detection of intracranial aneurysms. Radiographics 23:e12

    PubMed  Google Scholar 

  28. Gonzalez-Darder JM, Pesudo-Martinez JV, Feliu-Tatay RA (2001) Microsurgical management of cerebral aneurysms based in CT angiography with three-dimensional reconstruction (3D-CTA) and without preoperative cerebral angiography. Acta Neurochir (Wien) 143:673 679

    CAS  Google Scholar 

  29. Rovira A, Grive E, Alvarez-Sabin J (2005) Distribution territories and causative mechanisms of ischemic stroke. Eur Radiol 15:416–426

    CAS  PubMed  Google Scholar 

  30. Vilela P, Goulao A (2005) Ischemic stroke: carotid and vertebral artery disease. Eur Radiol 15:427–433

    CAS  PubMed  Google Scholar 

  31. Hirai T, Korogi Y, Ono K, Nagano M, Maruoka K, Uemura S, Takahashi M (2002) Prospective evaluation of suspected stenoocclusive disease of the intracranial artery: combined MR angiography and CT angiography compared with digital subtraction angiography. AJNR Am J Neuroradiol 23:93–101

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Lell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lell, M., Anders, K., Klotz, E. et al. Clinical evaluation of bone-subtraction CT angiography (BSCTA) in head and neck imaging. Eur Radiol 16, 889–897 (2006). https://doi.org/10.1007/s0330-005-0032-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s0330-005-0032-1

Keywords

Navigation