Skip to main content
Log in

Convolutional Neural Networks for the Detection and Measurement of Cerebral Aneurysms on Magnetic Resonance Angiography

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

Aneurysm size correlates with rupture risk and is important for treatment planning. User annotation of aneurysm size is slow and tedious, particularly for large data sets. Geometric shortcuts to compute size have been shown to be inaccurate, particularly for nonstandard aneurysm geometries. To develop and train a convolutional neural network (CNN) to detect and measure cerebral aneurysms from magnetic resonance angiography (MRA) automatically and without geometric shortcuts. In step 1, a CNN based on the U-net architecture was trained on 250 MRA maximum intensity projection (MIP) images, then applied to a testing set. In step 2, the trained CNN was applied to a separate set of 14 basilar tip aneurysms for size prediction. Step 1—the CNN successfully identified aneurysms in 85/86 (98.8% of) testing set cases, with a receiver operating characteristic (ROC) area-under-the-curve of 0.87. Step 2—automated basilar tip aneurysm linear size differed from radiologist-traced aneurysm size on average by 2.01 mm, or 30%. The CNN aneurysm area differed from radiologist-derived area on average by 8.1 mm2 or 27%. CNN correctly predicted the area trend for the set of aneurysms. This approach is to our knowledge the first using CNNs to derive aneurysm size. In particular, we demonstrate the clinically pertinent application of computing maximal aneurysm one-dimensional size and two-dimensional area. We propose that future work can apply this to facilitate pre-treatment planning and possibly identify previously missed aneurysms in retrospective assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Backes D, Rinkel GJ, Laban KG, Algra A, Vergouwen MD: Patient- and Aneurysm-Specific Risk Factors for Intracranial Aneurysm Growth: A Systematic Review and Meta-Analysis. Stroke 47:951–957, 2016. https://doi.org/10.1161/STROKEAHA.115.012162

    Article  PubMed  Google Scholar 

  2. Cebral JR, Raschi M: Suggested connections between risk factors of intracranial aneurysms: a review. Ann Biomed Eng 41:1366–1383, 2013. https://doi.org/10.1007/s10439-012-0723-0

    Article  Google Scholar 

  3. Brown, Jr RD, Broderick JP: Unruptured intracranial aneurysms: epidemiology, natural history, management options, and familial screening. Lancet Neurol 13:393–404, 2014. https://doi.org/10.1016/S1474-4422(14)70015-8

    Article  PubMed  Google Scholar 

  4. Ghosh S et al.: Association of morphologic and demographic features of intracranial aneurysms with their rupture: a retrospective analysis. Acta Neurochir Suppl 115:275–278, 2013. https://doi.org/10.1007/978-3-7091-1192-5_48

    Article  PubMed  Google Scholar 

  5. International Study of Unruptured Intracranial Aneurysms, I. Unruptured intracranial aneurysms--risk of rupture and risks of surgical intervention. N Engl J Med 339:1725–1733, 1998. https://doi.org/10.1056/NEJM199812103392401

  6. Etminan N et al.: The unruptured intracranial aneurysm treatment score: a multidisciplinary consensus. Neurology 85:881–889, 2015. https://doi.org/10.1212/WNL.0000000000001891

    Article  PubMed  PubMed Central  Google Scholar 

  7. Elmalem VI, Hudgins PA, Bruce BB, Newman NJ, Biousse V: Underdiagnosis of posterior communicating artery aneurysm in noninvasive brain vascular studies. J Neuroophthalmol 31:103–109, 2011. https://doi.org/10.1097/WNO.0b013e3181f8d985

    Article  PubMed  PubMed Central  Google Scholar 

  8. White PM, Wardlaw JM, Lindsay KW, Sloss S, Patel DK, Teasdale EM: The non-invasive detection of intracranial aneurysms: are neuroradiologists any better than other observers? Eur Radiol 13:389–396, 2003. https://doi.org/10.1007/s00330-002-1520-1

    Article  PubMed  Google Scholar 

  9. Raghavan ML, Ma B, Harbaugh RE: Quantified aneurysm shape and rupture risk. J Neurosurg 102:355–362, 2005. https://doi.org/10.3171/jns.2005.102.2.0355

    Article  Google Scholar 

  10. Bogunovic H et al.: Automated segmentation of cerebral vasculature with aneurysms in 3DRA and TOF-MRA using geodesic active regions: an evaluation study. Med Phys 38:210–222, 2011. https://doi.org/10.1118/1.3515749

    Article  PubMed  Google Scholar 

  11. Yang X, Blezek DJ, Cheng LTE, Ryan WJ, Kallmes DF, Erickson BJ: Computer-aided detection of intracranial aneurysms in MR angiography. J Digit Imaging 24:86–95, 2011. https://doi.org/10.1007/s10278-009-9254-0

    Article  PubMed  Google Scholar 

  12. Arimura H, Li Q, Korogi Y, Hirai T, Abe H, Yamashita Y, Katsuragawa S, Ikeda R, Doi K: Automated computerized scheme for detection of unruptured intracranial aneurysms in three-dimensional magnetic resonance angiography. Acad Radiol 11:1093–1104, 2004. https://doi.org/10.1016/j.acra.2004.07.011

    Article  PubMed  Google Scholar 

  13. Nakao T, Hanaoka S, Nomura Y, Sato I, Nemoto M, Miki S, Maeda E, Yoshikawa T, Hayashi N, Abe O: Deep neural network-based computer-assisted detection of cerebral aneurysms in MR angiography. J Magn Reson Imaging, 2017. https://doi.org/10.1002/jmri.25842

  14. Long J, Shelhamer E, Darrell T: Fully convolutional networks for semantic segmentation:3431–3440, 2015. https://doi.org/10.1109/cvpr.2015.7298965

  15. Ronneberger, O., Fischer, P. & Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. 9351, 234–241, https://doi.org/10.1007/978-3-319-24574-4_28 (2015).

  16. Venhuizen FG et al.: Robust total retina thickness segmentation in optical coherence tomography images using convolutional neural networks. Biomed Opt Express 8:3292–3316, 2017. https://doi.org/10.1364/BOE.8.003292

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mohseni Salehi SS, Erdogmus D, Gholipour A: Auto-Context Convolutional Neural Network (Auto-Net) for Brain Extraction in Magnetic Resonance Imaging. IEEE Trans Med Imaging 36:2319–2330, 2017. https://doi.org/10.1109/TMI.2017.2721362

    Article  PubMed  Google Scholar 

  18. Dalmis MU et al.: Using deep learning to segment breast and fibroglandular tissue in MRI volumes. Med Phys 44:533–546, 2017. https://doi.org/10.1002/mp.12079

    Article  CAS  PubMed  Google Scholar 

  19. Piotin M, Daghman B, Mounayer C, Spelle L, Moret J: Ellipsoid approximation versus 3D rotational angiography in the volumetric assessment of intracranial aneurysms. AJNR Am J Neuroradiol 27:839–842, 2006

    CAS  PubMed  Google Scholar 

  20. Chan SH, Wong KS, Woo YM, Chan KY, Leung KM: Volume measurement of the intracranial aneurysm: a discussion and comparison of the alternatives to manual segmentation. J Cerebrovasc Endovasc Neurosurg 16:358–363, 2014. https://doi.org/10.7461/jcen.2014.16.4.358

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sluzewski M, van Rooij WJ, Slob MJ, Bescós JO, Slump CH, Wijnalda D: Relation between aneurysm volume, packing, and compaction in 145 cerebral aneurysms treated with coils. Radiology 231:653–658, 2004. https://doi.org/10.1148/radiol.2313030460

    Article  PubMed  Google Scholar 

  22. Slob MJ, Sluzewski M, van Rooij WJ: The relation between packing and reopening in coiled intracranial aneurysms: a prospective study. Neuroradiology 47:942–945, 2005. https://doi.org/10.1007/s00234-005-1446-9

    Article  PubMed  Google Scholar 

  23. Kai Y, Hamada J, Morioka M, Yano S, Kuratsu J: Evaluation of the stability of small ruptured aneurysms with a small neck after embolization with Guglielmi detachable coils: correlation between coil packing ratio and coil compaction. Neurosurgery 56:785–792; discussion 785–792, 2005

    Article  PubMed  Google Scholar 

  24. Yasumoto T, Osuga K, Yamamoto H, Ono Y, Masada M, Mikami K, Kanamori D, Nakamura M, Tanaka K, Nakazawa T, Higashihara H, Maeda N, Tomiyama N: Long-term outcomes of coil packing for visceral aneurysms: correlation between packing density and incidence of coil compaction or recanalization. J Vasc Interv Radiol 24:1798–1807, 2013. https://doi.org/10.1016/j.jvir.2013.04.030

    Article  PubMed  Google Scholar 

  25. Austin GM, Schievink W, Williams R: Controlled pressure-volume factors in the enlargement of intracranial aneurysms. Neurosurgery 24:722–730, 1989

    Article  CAS  PubMed  Google Scholar 

  26. Valencia A, Morales H, Rivera R, Bravo E, Galvez M: Blood flow dynamics in patient-specific cerebral aneurysm models: the relationship between wall shear stress and aneurysm area index. Med Eng Phys 30:329–340, 2008. https://doi.org/10.1016/j.medengphy.2007.04.011

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph N. Stember.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stember, J.N., Chang, P., Stember, D.M. et al. Convolutional Neural Networks for the Detection and Measurement of Cerebral Aneurysms on Magnetic Resonance Angiography. J Digit Imaging 32, 808–815 (2019). https://doi.org/10.1007/s10278-018-0162-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-018-0162-z

Keywords

Navigation