Skip to main content

Advertisement

Log in

Challenges and current methods for attenuation correction in PET/MR

  • Review Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Quantitative PET imaging requires an attenuation map to correct for attenuation. In stand-alone PET or PET/CT, the attenuation map is usually derived from a transmission scan or CT image, respectively. In PET/MR, these methods will most likely not be used. Therefore, attenuation correction has long been regarded as one of the major challenges in the development of PET/MR. In the past few years, much progress has been made in this field. In this review, the challenges faced in attenuation correction for PET/MR are discussed. Different methods have been proposed to overcome these challenges. An overview of the MR-based (template-based and voxel-based), transmission-based and emission-based methods and the results that have been obtained is provided. Although several methods show promising results, no single method fulfils all of the requirements for the ideal attenuation correction method for PET/MR. Therefore, more work is still necessary in this field. To allow implementation in routine clinical practice, extensive evaluation of the proposed methods is necessary to demonstrate robustness and automation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Grazioso R, Ladebeck R, Schmand M (2005) APD-based PET for combined MR-PET imaging. In: Proceedings of the 13th scientific meeting, international society for magnetic resonance in medicine, Miami Beach, p 408

  2. Pichler BJ, Judenhofer MS, Catana C (2006) Performance test of an LSO-APD detector in a 7-T MRI scanner for simultaneous PET/MRI. J Nucl Med 47:639–647

    PubMed  Google Scholar 

  3. Judenhofer MS, Catana C, Swann BK, Siegel SB, Jung WI, Nutt RE, Cherry SR, Claussen CD, Pichler BJ (2007) PET/MR images acquired with a compact MR- compatible PET detector in a 7-T magnet. Radiology 244:807–814

    Article  PubMed  Google Scholar 

  4. Schulz V, Solf T, Weissler B, Gebhardt P, Fischer P, Ritzert M, Mlotok V, Piemonte C, Zorzi N, Melchiorri M, Vandenberghe S, Keereman V, Schaeffter T, Marsden P (2009) A preclinical PET/MR insert for a human 3T MR scanner. IEEE Nucl Sci Conf R 2577–2579

  5. Solf T, Schulz V, Weissler B, Thon A, Fischer P, Ritzert M, Mlotok V, Piemonte C, Zorzi N (2009) Solid-state detector stack for ToF-PET/MR. IEEE Nucl Sci Conf R 2798–2799

  6. Lalush D, Wernick M (2004) Iterative image reconstruction. In: Wernick M, Aarsvold J (eds) Emission tomography: the fundamentals of PET and SPECT. Elsevier Academic Press, San Diego

    Google Scholar 

  7. Zaidi H (2007) Is MR-guided attenuation correction a viable option for dual-modality PET/MR Imaging? Radiology 244:639–642

    Article  PubMed  Google Scholar 

  8. Hubbel J (1969) Photon cross sections, attenuation coefficients, and energy absorption coefficients from 10 keV to 100 GeV. NSRDS-NBS 29. National Bureau of Standards, Washington, DC

  9. International Commission on Radiation Units and Measurements (ICRU) (1989) Tissue substitutes in radiation, dosimetry and measurement. ICRU Report 44. ICRU, Bethesda, MD

  10. Bailey D, Townsend D, Valk P, Maisey M (eds) (2005) Positron emission tomography: basic sciences. Springer, London

    Google Scholar 

  11. Keereman V, Van Holen R, Mollet P, Vandenberghe S (2011) The effect of errors in segmented attenuation maps on PET quantification. Med Phys 38:6010–6019

    Article  PubMed  Google Scholar 

  12. Dahlbom M, Hoffman E (1987) Problems in signal-to-noise ratio for attenuation correction in high resolution PET. IEEE T Nucl Sci 34:288–293

    Article  Google Scholar 

  13. deKemp RA, Nahmias C (1994) Attenuation correction in PET using single photon transmission measurement. Med Phys 21:771–778

    Article  PubMed  CAS  Google Scholar 

  14. Beyer T, Townsend D, Brun T (2000) A combined PET/CT scanner for clinical oncology. J Nucl Med 41:1369–1379

    PubMed  CAS  Google Scholar 

  15. Kinahan P, Townsend D, Beyer T, Sashin D (1998) Attenuation correction for a combined 3D PET/CT scanner. Med Phys 25:2046–2053

    Article  PubMed  CAS  Google Scholar 

  16. Burger C, Goerres G, Schoenes S, Buck A (2002) PET attenuation coefficients from CT images: experimental evaluation of the transformation of CT into PET 511-keV attenuation coefficients. Eur J Nucl Med 29:922–927

    Article  CAS  Google Scholar 

  17. Beyer T, Antoch G, Blodgett T, Freudenberg LF, Akhurst T, Mueller S (2003) Dual- modality PET/CT imaging: the effect of respiratory motion on combined image quality in clinical oncology. Eur J Nucl Med Mol Imaging 30:588–596

    Article  PubMed  Google Scholar 

  18. Goerres G, Burger C, Kamel E, Seifert B, Kaim A, Buck A, Buehler T, Schulthess G (2003) Respiration-induced attenuation artifact at PET/CT: technical considerations. Radiology 226:906–910

    Article  PubMed  Google Scholar 

  19. Delso G, Ziegler S (2009) PET/MRI system design. Eur J Nucl Med Mol Imaging 36(Suppl 1):S86–S92

    Article  PubMed  Google Scholar 

  20. Delso G, Martinez-Moller A, Bundschuh R, Ladebeck R, Candidus Y, Faul D, Ziegler S (2010) Evaluation of the attenuation properties of MR equipment for its use in a whole-body PET/MR scanner. Phys Med Biol 55:4361–4374

    Article  PubMed  CAS  Google Scholar 

  21. Mawlawi O, Erasmus JJ, Pan T, Cody DD, Campbell R, Lonn AH, Kohlmyer S, Macapinlac HA, Podoloff DA (2006) Truncation artifact on PET/CT: impact on measurements of activity concentration and assessment of a correction algorithm. Am J Roentgenol 186:1458–1467

    Article  Google Scholar 

  22. Beyer T, Bockisch A, Kühl H, Martinez MJ (2006) Whole-body 18F-FDG PET/CT in the presence of truncation artifacts. J Nucl Med 47:91–99

    PubMed  Google Scholar 

  23. Berker Y, Franke J, Salomon A, Palmowski M, Donker H, Temur Y, Mottaghy F, Kuhl C, Izquierdo-Garcia D, Fayad Z, Kiessling F, Schulz V (2012) MRI-based attenuation correction for hybrid PET/MRI systems: a four-class tissue segmentation technique using a combined ultra-short echo time (UTE)/Dixon MR sequence. J Nucl Med 53:796–804

    Article  PubMed  Google Scholar 

  24. Montandon M, Zaidi H (2005) Atlas-guided non-uniform attenuation correction in cerebral 3D PET imaging. Neuroimage 25:278–286

    Article  PubMed  Google Scholar 

  25. Rota Kops E, Herzog H (2007) Alternative methods for attenuation correction for PET images in MR-PET scanners. IEEE Nucl Sci Conf R 4327–4330

  26. Rota Kops E, Herzog H (2008) Template based attenuation correction for PET in MR-PET scanners. IEEE Nucl Sci Conf R 3786–3789

  27. Hofmann M, Steinke F, Scheel V (2008) MRI-based attenuation correction for PET/MRI: a novel approach combining pattern recognition and atlas registration. J Nucl Med 49:1875–1883

    Article  PubMed  Google Scholar 

  28. Hofmann M, Bezrukov I, Mantlik F, Aschoff P, Steinke F, Beyer T, Pichler BJ, Scholkopf B (2011) MRI-based attenuation correction for whole-body PET/MRI: quantitative evaluation of segmentation- and atlas-based methods. J Nucl Med 52:1392–1399

    Article  PubMed  Google Scholar 

  29. Beyer T, Weigert M, Quick HH, Pietrzyk U, Vogt F, Palm C, Antoch G, Mueller S, Bockisch A (2008) MR-based attenuation correction for torso-PET/MR imaging: pitfalls in mapping MR to CT data. Eur J Nucl Med Mol Imaging 35:1142–1146

    Article  PubMed  Google Scholar 

  30. El Fakhri G, Kijewski MF, Johnson KA, Syrkin G, Killiany RJ, Becker JA, Zimmerman RE, Albert MS (2003) MRI-guided SPECT perfusion measures and volumetric MRI in prodromal Alzheimer disease. Arch Neurol 60:1066–1072

    Article  PubMed  Google Scholar 

  31. El Fakhri G, Kijewski MF, Moore SC (2001) Absolute activity quantitation from projections using an analytical approach: comparison with iterative methods in Tc-99 m and I-123 brain SPECT. IEEE T Nucl Sci 48:768–773

    Article  Google Scholar 

  32. Zaidi H, Montandon M, Slosman D (2003) Magnetic resonance imaging-guided attenuation and scatter corrections in three-dimensional brain positron emission tomography. Med Phys 30:937–948

    Article  PubMed  Google Scholar 

  33. Zaidi H, Montandon M, Slosman D (2004) Attenuation compensation in cerebral 3D PET: effect of the attenuation map on absolute and relative quantitation. Eur J Nucl Med Mol Imaging 31:52–63

    Article  PubMed  Google Scholar 

  34. Schlemmer H, Pichler B, Schmand M, Burbar Z, Michel C, Ladebeck R, Jattke K, Townsend D, Nahmias C, Jacob P, Heiss W, Claussen C (2008) Simultaneous MR/PET imaging of the human brain: feasibility study. Radiology 248:1028–1035

    Article  PubMed  Google Scholar 

  35. Hu Z, Renisch S, Schweizer B, Blaffert T, Ojha N, Guo T, Tang J, Tung C, Kaste J, Schulz V, Torres I, Shao L (2010) MR-based attenuation correction for whole-body PET/MR system. IEEE Nucl Sci Conf R 2119–2122

  36. Hu Z, Ojha N, Renisch S, Schulz V, Torres I, Buhl A, Pal D, Muswick G, Penatzer J, Guo T, Bönert P, Tung C, Kaste J, Morich M, Havens T, Maniawski P, Schafer W, Gu¨nther R, Krombach G, Shao L (2009) MR-based attenuation correction for a whole-body sequential PET/MR system. IEEE Nucl Sci Conf R 3508–3512

  37. Rota Kops E, Wagenknecht G, Scheins J, Tellmann L, Herzog H (2009) Attenuation correction in MR-PET scanners with segmented T1-weighted MR images. IEEE Nucl Sci Conf R 2530–2533

  38. Steinberg J, Jia G, Sammet S, Zhang J, Hall N, Knopp M (2010) Three-region MRI-based whole-body attenuation correction for automated PET reconstruction. Nucl Med Biol 37:227–235

    Article  PubMed  CAS  Google Scholar 

  39. Schulz V, Torres-Espallardo I, Renisch S, Hu Z, Ojha N, Börnert P, Perkuhn M, Niendorf T, Schafer WM, Brockmann H, Krohn T, Buhl A, Günther RW, Mottaghy FM, Krombach GA (2010) Automatic, three-segment, MR-based attenuation correction for whole-body PET/MR data. Eur J Nucl Med Mol Imaging 38:138–152

    Article  PubMed  Google Scholar 

  40. Dixon W (1984) Simple proton spectroscopic imaging. Radiology 153:189–194

    PubMed  CAS  Google Scholar 

  41. Martinez-Moller A, Souvatzoglou M, Delso G, Bundschuh R, Chefd’hotel C, Ziegler S, Navab N, Schwaiger M, Nekolla S (2009) Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data. J Nucl Med 50:520–526

    Article  PubMed  Google Scholar 

  42. Coombs B, Szumowski J, Coshow W (1997) Two-point Dixon technique for water-fat signal decomposition with B0 inhomogeneity correction. Magn Reson Med 38:884–889

    Article  PubMed  CAS  Google Scholar 

  43. Eiber M, Martinez-Möller A, Souvatzoglou M, Holzapfel K, Pickhard A, Loffelbein D, Santi I, Rummeny E, Ziegler S, Schwaiger M, Nekolla S, Beer A (2011) Value of a Dixon-based MR/PET attenuation correction sequence for the localization and evaluation of PET-positive lesions. Eur J Nucl Med Mol Imaging 38:1691–1701

    Article  PubMed  Google Scholar 

  44. Eiber M, Souvatzoglou M, Pickhard A, Loeffelbein D, Knopf A, Holzapfel K, Martinez-Moller A, Nekolla S, Scherer E, Schwaiger M, Rummeny E, Beer A (2011) Simulation of a MR-PET protocol for staging of head-and-neck cancer including Dixon MR for attenuation correction. Eur J Radiol. doi:10.1016/j.ejrad.2011.10.005

  45. Gatehouse P, Bydder G (2003) Magnetic resonance imaging of short T2 components in tissue. Clin Radiol 58:1–19

    Article  PubMed  CAS  Google Scholar 

  46. Robson M, Gatehouse P, So P, Bell J (2004) Contrast enhancement of short T2 tissues using ultrashort TE (UTE) pulse sequences. Clin Radiol 59:720–726

    Article  PubMed  CAS  Google Scholar 

  47. Keereman V, Fierens Y, Broux T, De Deene Y, Lonneux M, Vandenberghe S (2010) MRI-based attenuation correction for PET/MRI using ultrashort echo time sequences. J Nucl Med 51:812–818

    Article  PubMed  Google Scholar 

  48. Catana C, Kouwe A, Benner T, Michel C, Hamm M, Fenchel M, Fischl B, Rosen B, Schmand M, Sorensen A (2010) Toward implementing an MRI-based PET attenuation-correction method for neurologic studies on the MR-PET brain proto-type. J Nucl Med 51:1431–1438

    Article  PubMed  CAS  Google Scholar 

  49. Johansson A, Karlsson M, Nyholm T (2011) CT substitute derived from MRI sequences with ultrashort echo time. Med Phys 38:2708–2717

    Article  PubMed  Google Scholar 

  50. Mollet P, Keereman V, Clementel E, Vandenberghe S (2012) Simultaneous MR-compatible emission and transmission imaging for PET using time-of-flight information. IEEE Trans Med Imaging. doi:10.1109/TMI.2012.2198831

  51. Jan S, Santin G, Strul D, Staelens S, Assie K, Autret D, Avner S, Barbier R, Bardies M, Bloomfield P, Brasse D, Breton V, Bruyndonckx P, Buvat I, Chatziioannou A, Choi Y, Chung Y, Comtat C, Donnarieix D, Ferrer L, Glick S, Groiselle C, Guez D, Honore P, Kerhoas-Cavata S, Kirov A, Kohli V, Koole M, Krieguer M, van der Laan D, Lamare F, Largeron G, Lartizien C, Lazaro D, Maas M, Maigne L, Mayet F, Melot F, Merheb C, Penacchio E, Perez J, Pietrzyk U, Rannou F, Rey M, Schaart D, Schmidtlein C, Simon L, Song T, Vieira J, Visvikis D, Van de Walle R, Wieers E, Morel C (2004) GATE: a simulation toolkit for PET and SPECT. Phys Med Biol 49:4543–4561

    Article  PubMed  CAS  Google Scholar 

  52. Segars P (2001) Development of a new dynamic NURBS-based cardiac-torso (NCAT) phantom. PhD thesis. University of North Carolina at Chapel Hill

  53. Tai Y, Lin K, Dahlbom M, Hoffman E (1996) A hybrid attenuation correction technique to compensate for lung density in 3-D total body PET. IEEE T Nucl Sci 43:323–330

    Article  Google Scholar 

  54. Xu M, Cutler P, Luk W (1996) Adaptive, segmented attenuation correction for whole-body PET imaging. IEEE T Nucl Sci 43:331–336

    Article  Google Scholar 

  55. Censor Y, Gustafson DE, Lent A, Tuy H (1979) A new approach to the emission computerized tomography problem: simultaneous calculation of attenuation and activity coefficients. IEEE Trans Nucl Sci 26:2775–2779

    Article  Google Scholar 

  56. Nuyts J, Dupont P, Stroobants S, Benninck R, Mortelmans L, Suetens P (1999) Simultaneous maximum a posteriori reconstruction of attenuation and activity distributions from emission sinograms. IEEE Trans Med Imaging 18:393–403

    Article  PubMed  CAS  Google Scholar 

  57. Dicken V (1999) A new approach towards simultaneous activity and attenuation reconstruction in emission tomography. Inverse Prob 15:931–960

    Article  Google Scholar 

  58. Conti M (2011) Why is TOF PET reconstruction a more robust method in the presence of inconsistent data? Phys Med Biol 56:155–168

    Article  PubMed  Google Scholar 

  59. Defrise M, Rezzaei A, Nuyts J (2012) Time-of-flight PET data determine the attenuation sinogram up to a constant. Phys Med Biol 57:885–899

    Article  PubMed  Google Scholar 

  60. Welch A, Campbell C, Clackdoyle R, Natterer F, Hudson M, Bromiley A, Mikecz P, Chillcot F, Dodd M, Hopwood P, Craib S, Gullberg GT, Sharp P (1998) Attenuation correction in PET using consistency information. IEEE T Nucl Sci 45:3134–3141

    Article  Google Scholar 

  61. Bromiley A, Welch A, Chilcott F, Waikar S, McCallum S, Dodd M, Craib S, Schweiger L, Sharp P (2001) Attenuation correction in PET using consistency conditions and a three-dimensional template. IEEE T Nucl Sci 48:1371–1377

    Article  Google Scholar 

  62. Salomon A, Goedicke A, Schweizer B, Aach T, Schulz V (2011) Simultaneous reconstruction of activity and attenuation for PET/MR. IEEE Trans Med Imaging 30:804–813

    Article  PubMed  Google Scholar 

  63. Delso G, Martinez-Möller A, Bundschuh R, Nekolla S, Ziegler S (2010) The effect of limited MR field of view in MR/PET attenuation correction. Med Phys 37:2804–2812

    Article  PubMed  Google Scholar 

  64. Marshall H, Prato F, Deans L, Théberge J, Thompson R, Stodilka R (2012) Variable lung density consideration in attenuation correction of whole-body PET/MRI. J Nucl Med 53:977–984

    Article  PubMed  Google Scholar 

  65. Buerger C, Aitken A, Tsoumpas C, King A, Schulz V, Marsden P, Schaeffter T (2011) Investigation of 4D PET attenuation correction using Ultra-short Echo Time MR. IEEE Nucl Sci Conf R 3558–3561

Download references

Acknowledgments

This research was supported by the European Union FP7 projects HYPERimage (Grant 201651) and SUBLIMA (Grant 241711).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Keereman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keereman, V., Mollet, P., Berker, Y. et al. Challenges and current methods for attenuation correction in PET/MR. Magn Reson Mater Phy 26, 81–98 (2013). https://doi.org/10.1007/s10334-012-0334-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-012-0334-7

Keywords

Navigation