Skip to main content
Log in

Correlation of Hemodynamic Events with Clinical and Pathological Observations

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The correlation of hemodynamic events with clinical or pathological observations is represented by a variety of applications reflecting the broad range of this theme. The position paper describes several cases in which benefits of combining imaging information with transport models of contrast material, can cause a gain in hemodynamic information. What appears to be lack of cohesiveness among the cases illustrates the variety in the application of hemodynamic research to the practice of medicine. Some of the contributions presented at the symposium do not directly apply to clinical medicine, but instead described mathematical models or applications to animal physiology or technical advancements in measuring blood rheology. Although related to this theme topic they fall somewhat outside the main scope. The topics summarized below demonstrate four examples in which translation of the research to the clinical arena can be realized in a short period of time. Overall recommendations for priority objectives related to this topic are provided at the end of this position paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Back, L. H., and D. W. Crawford. Wall shear stress estimates in coronary artery constrictions. J. Biomech. Eng. 114:515–520, 1992.

    Google Scholar 

  2. Back, L. H., J. R. Radbill, and Y. I. Cho. Measurement and prediction of flow through a replica segment of a mildly atherosclerotic coronary artery of man. J. Biomech. 19:1–17, 1986.

    Article  Google Scholar 

  3. Banerjee, R., L. H. Back, M. R. Back, and Y. I. Cho. Physiological flow analysis in significant human coronary artery stenoses. Biorheology 40:451–476, 2003.

    Google Scholar 

  4. Bleasdale, R. A., K. H. Parker, and C. J. H. Jones. Chasing the wave. Unfashionable but important new concepts in arterial wave travel. Am. J. Physiol. Heart Circ. Physiol. 284:H1879–1885, 2003.

    Google Scholar 

  5. Chandran, K. B., M. J. Vonesh, A. Roy, S. Greenfield, B. Kane, R. Greene, and D. D. McPherson. Computation of vascular flow dynamics from intravascular ultrasound images. Med. Eng. Phys. 18:295–304, 1996.

    Article  Google Scholar 

  6. Di Mario, C., R. Gil, P. J. de Feyter, J. C. H. Schuurbiers, and P. W. Serruys. Utilization of translesional hemodynamics: Comparison of pressure and flow methods in stenosis assessment in patients with coronary artery disease. Cathet. Cardiovasc. Diagn. 38:189–201, 1996.

    Google Scholar 

  7. Doucette, J. W., P. D. Corl, H. M. Payne, A. E. Flynn, M. Goto, Nassi, M, and J. Segal. Validation of a Doppler guide wire for intravascular measurement of coronary artery flow velocity. Circulation 85:1899–1911, 1992.

    Google Scholar 

  8. Emanuelsson, H., M. Dohnal, C. Lamm, and L. Tenerz. Initial experiences with a miniaturized pressure transducer during coronary angioplasty. Cathet. Cardiovasc. Diagn. 24:137–143, 1991.

    Google Scholar 

  9. Gould, K. L. Pressure-flow characteristics of coronary stenoses in unsedated dogs at rest and during coronary vasodilation. Circ. Res. 43:242–253, 1978.

    Google Scholar 

  10. Gould, K. L. Quantification of coronary artery stenosis in vivo. Circ. Res. 57:341–353, 1985.

    Google Scholar 

  11. Gould, K. L., R. L. Kirkeeide, and M. Buchi. Coronary flow reserve as a physiologic measure of stenosis severity. J. Am. Coll. Cardiol. 15:459–474, 1990.

    Article  Google Scholar 

  12. Hoffman, J. I. E. Problems of coronary flow reserve. Ann. Biomed. Eng. 28:884–896, 2000.

    Article  Google Scholar 

  13. Holdsworth, D. W., M. Drangova, and A. Fenster. Quantitative angiographic blood-flow measurement using pulsed intra-arterial injection. Med. Phys. 26(10):2168–2175, 1999.

    Article  Google Scholar 

  14. Hong, H., S. Aksenov, X. Guan, J. T. Fallon, D. Waters, and C. Chen. Remodeling of small intramyocardial coronary arteries distal to a severe epicardial coronary artery stenosis. Arterioscler. Thromb. Vasc. Biol. 22:2059–2065, 2002.

    Google Scholar 

  15. Kern, M. J. Coronary physiology revisited: Practical insights from the cardiac catheterization laboratory. Circulation 101:1344–1351, 2000.

    Google Scholar 

  16. Komaru, T., H. Kanatsuka, and K. Shirato. Coronary microcirculation: Physiology and pharmacology. Pharmacol. Ther. 86:217–261, 2000.

    Article  Google Scholar 

  17. Krams, R., J. J. Wentzel, J. A. Oomen, R. Vinke, J. C. Schuurbiers, P. J. de Feyter, P. W. Serruys, and C. J. Slager. Evaluation of endothelial shear stress and 3d geometry as factors determining the development of atherosclerosis and remodeling in human coronary arteries in vivo. Combining 3d reconstruction from angiography and ivus (angus) with computational fluid dynamics. Arterioscler. Thromb. Vasc. Biol. 17:2061–2065, 1997.

    Google Scholar 

  18. Ku, D. N. Blood flow in arteries. Ann. Rev. Fluid Mech. 29:399–434, 1997.

    Article  MathSciNet  Google Scholar 

  19. Lieber, B. B., C. Sadasivan, M. J. Gounis, J. Seong, L. Miskolczi, and A. K. Wakhloo. Functional Angiography. Crit. Rev. Biomed. Eng. 33:1–102, 2005.

    Article  Google Scholar 

  20. Marques, K. M. J., H. J. Spruijt, C. Boer, N. Westerhof, C. A. Visser, and F. C. Visser. The diastolic flow-pressure gradient relation in coronary stenoses in humans. J. Am. Coll. Cardiol. 39:1630–1636, 2002.

    Google Scholar 

  21. Marzilli, M., G. Sambuceti, R. Testa, and S. Fedele. Platelet glycoprotein IIb/IIIa receptor blockade and coronary resistance in unstable angina. J. Am. Coll. Cardiol. 40:2102–2109, 2002.

    Article  Google Scholar 

  22. Mates, R. E., R. L. Gupta, A. C. Bell, and F. J. Klocke. Fluid dynamics of coronary artery stenosis. Circ Res 42:152–162, 1978.

    Google Scholar 

  23. Meuwissen, M., M. Siebes, J. A. E. Spaan, and J. J. Piek. Rationale of combined intracoronary pressure and flow velocity measurements. Z. Kardiol. 91(Suppl 3):108–112, 2002.

    Article  Google Scholar 

  24. Meuwissen, M., M. Siebes, S. A. Chamuleau, J. G. Tijssen, J. A. E. Spaan, and J. J. Piek. Intracoronary pressure and flow velocity for hemodynamic evaluation of coronary stenoses. Expert Rev. Cardiovasc. Ther. 1:471–479, 2003.

    Article  Google Scholar 

  25. Meuwissen, M., M. Siebes, S. A. J. Chamuleau, B. L. F. van Eck-Smit, K. T. Koch, R. J. de Winter, J. G. P. Tijssen, J. A. E. Spaan, and J. J. Piek. Hyperemic stenosis resistance index for evaluation of functional coronary lesion severity. Circulation 106:441–446, 2002.

    Google Scholar 

  26. Meuwissen, M., S. A. J. Chamuleau, M. Siebes, C. E. Schotborgh, K. T. Koch, R. J. de Winter, M. Bax, A. de Jong, J. A. E. Spaan, and J. J. Piek. Role of variability in microvascular resistance on fractional flow reserve and coronary blood flow velocity reserve in intermediate coronary lesions. Circulation 103:184–187, 2001.

    Google Scholar 

  27. Pijls, N. H. J., J. A. van Son, R. L. Kirkeeide, B. De Bruyne, and K. L. Gould. Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous transluminal coronary angioplasty. Circulation 87:1354–1367, 1993.

    Google Scholar 

  28. Reichle, F. A., M. Sovak, R. L. Soulen, and G. P. Rosemond. Portal vein blood flow determination in the unanesthetized human by umbilicoportal cannulation. J. Surg. Res. 12(3):146–50, 1972.

    Article  Google Scholar 

  29. Sadasivan, C., B. B. Lieber, M. J. Gounis, D. K. Lopes, and L. N. Hopkins. Angiographic quantification of contrast medium washout from cerebral aneurysms after stent placement. Am. J. Neuroradiol. 23(7):1214–1221, 2002.

    Google Scholar 

  30. Serruys, P. W., C. Di Mario, N. Meneveau, P. de Jaegere, S. Strikwerda, P. J. de Feyter, and H. Emanuelsson. Intracoronary pressure and flow velocity with sensor-tip guidewires: A new methodologic approach for assessment of coronary hemodynamics before and after coronary interventions. Am. J. Cardiol. 71:41D–53D, 1993.

    Article  Google Scholar 

  31. Siebes, M., B.-J. Verhoeff, M. Meuwissen, R. J. de Winter, J. A. E. Spaan, and J. J. Piek. Single-wire pressure and flow velocity measurement to quantify coronary stenosis hemodynamics and effects of percutaneous interventions. Circulation 109:756–762, 2004.

    Article  Google Scholar 

  32. Siebes, M., S. A. J. Chamuleau, M. Meuwissen, J. J. Piek and J. A. E. Spaan. Influence of hemodynamic conditions on fractional flow reserve: Parametric analysis of underlying model. Am. J. Physiol. Heart Circ. Physiol. 283:H1462–H1470, 2002.

    Google Scholar 

  33. Slager, C. J., J. J. Wentzel, J. C. Schuurbiers, J. A. Oomen, J. Kloet, R. Krams, C. von Birgelen, W. J. van der Giessen, P. W. Serruys and P. J. de Feyter. True 3-dimensional reconstruction of coronary arteries in patients by fusion of angiography and ivus (angus) and its quantitative validation. Circulation 102:511–516, 2000.

    Google Scholar 

  34. Stone, P. H., A. U. Coskun, S. Kinlay, M. E. Clark, M. Sonka, A. Wahle, O. J. Ilegbusi, Y. Yeghiazarians, J. J. Popma, J. Orav, R. E. Kuntz, and C. L. Feldman. Effect of endothelial shear stress on the progression of coronary artery disease, vascular remodeling, and in-stent restenosis in humans: In vivo 6-month follow-up study. Circulation 108:438–444, 2003.

    Google Scholar 

  35. Sun, Y.-H., T. J. Anderson, K. H. Parker, and J. V. Tyberg. Wave-intensity analysis: A new approach to coronary hemodynamics. J. Appl. Physiol. 89:1636–1644, 2000.

    Google Scholar 

  36. Taylor, G. I. Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. Lond. A 219(1137):186–203, 1953.

    Google Scholar 

  37. Taylor, G. I. The dispersion of matter in turbulent flow through a pipe. Proc. R. Soc. Lond. A 223(1155):446–68, 1954.

    Google Scholar 

  38. Topol, E. J., and S. E. Nissen. Our preoccupation with coronary luminology: The dissociation between clinical and angiographic findings in ischemic heart disease. Circulation 92:2333–2342, 1995.

    Google Scholar 

  39. Wahle, A., G. P. M. Prause, S. C. DeJong, and M. Sonka. Geometrically correct 3-d reconstruction of intravascular ultrasound images by fusion with biplane angiography-methods and validation. IEEE Trans. Med. Imaging 18:686–699, 1999.

    Article  Google Scholar 

  40. Wakhloo, A. K., B. B. Lieber, S. Rudin, M. D. Fronckowiak, R. A. Mericle, and L. N. Hopkins. A novel approach to flow quantification in brain arteriovenous malformations prior to enbucrilate embolization: Use of insoluble contrast (Ethiodol droplet) angiography. J. Neurosurg. 89(3):395–404, 1998.

    Google Scholar 

  41. Wentzel J. J., D. M. Whelan, W. J. van der Giessen, H. M. van Beusekom, I. Andhyiswara, P. W. Serruys, C. J. Slager, and R. Krams. Coronary stent implantation changes 3-d vessel geometry and 3-d shear stress distribution. J. Biomech. 33:1287–1295, 2000.

    Article  Google Scholar 

  42. Wentzel, J. J., E. Janssen, J. Vos, J. C. Schuurbiers, R. Krams, P. W. Serruys, P. J. de Feyter, and C. J. Slager. Extension of increased atherosclerotic wall thickness into high shear stress regions is associated with loss of compensatory remodeling. Circulation 108:17–23, 2003.

    Article  Google Scholar 

  43. Wentzel, J. J., F. J. Gijsen, N. Stergiopulos, P. W. Serruys, C. J. Slager, and R. Krams. Shear stress, vascular remodeling and neointimal formation. J. Biomech. 36:681–688, 2003.

    Article  Google Scholar 

  44. Yamaguchi, T. Clinical Application of Computational Mechanics to the Cardiovascular System. Tokyo, Berlin, Heidelberg, New York: Springer-Verlag, 2000.

    Google Scholar 

  45. Yamaguchi, T., T. Hayasaka, D. Mori, H. Hayashi, K. Yano, F. Mizuno, and M. Harazawa. Towards Computational Biomechanics Based Cardiovascular Medical Practice. In: Computational Fluid Dynamics 2002, edited by S. W. Armfeld, P. Morgan, and K. Srinivas. Berlin, Heidelberg, New York: Springer-Verlag, 2003, pp. 46–61.

    Google Scholar 

  46. Young D. F. Fluid mechanics of arterial stenoses. J. Biomech. Eng. 101:157–175, 1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baruch B. Lieber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lieber, B.B., Siebes, M. & Yamaguchi, T. Correlation of Hemodynamic Events with Clinical and Pathological Observations. Ann Biomed Eng 33, 1695–1703 (2005). https://doi.org/10.1007/s10439-005-8760-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-8760-6

Keywords

Navigation