Skip to main content

Advertisement

Log in

Unified Approach for Multiple Sclerosis Lesion Segmentation on Brain MRI

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The presence of large number of false lesion classification on segmented brain MR images is a major problem in the accurate determination of lesion volumes in multiple sclerosis (MS) brains. In order to minimize the false lesion classifications, a strategy that combines parametric and nonparametric techniques is developed and implemented. This approach uses the information from the proton density (PD)- and T2-weighted and fluid attenuation inversion recovery (FLAIR) images. This strategy involves CSF and lesion classification using the Parzen window classifier. Image processing, morphological operations, and ratio maps of PD- and T2-weighted images are used for minimizing false positives. Contextual information is exploited for minimizing the false negative lesion classifications using hidden Markov random field-expectation maximization (HMRF-EM) algorithm. Lesions are delineated using fuzzy connectivity. The performance of this algorithm is quantitatively evaluated on 23 MS patients. Similarity index, percentages of over, under, and correct estimations of lesions are computed by spatially comparing the results of present procedure with expert manual segmentation. The automated processing scheme detected 80% of the manually segmented lesions in the case of low lesion load and 93% of the lesions in those cases with high lesion load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1.
FIGURE 2.
FIGURE 3.
FIGURE 4.
FIGURE 5.

Similar content being viewed by others

Abbreviations

CSF :

Cerebrospinal fluid

EDSS :

Expanded disability status scale

EM :

Expectation maximization

FLAIR :

Fluid attenuation inversion recovery

FNM :

False negative minimization

FPM :

False positive minimization

FSE :

Fast spin echo

GM :

Gray matter

HMRF :

Hidden Markov random field

HMRF-EM :

Hidden Markov random field-expectation maximization

IDL :

Interactive data language

MR :

Magnetic resonance

MRF :

Markov random field

MRI :

Magnetic resonance imaging

MS :

Multiple sclerosis

PCE :

Percentage of correct estimation

PD :

Proton density

POE :

Percentage of overestimation

PUE :

Percentage of underestimation

SI :

Similarity index

SPM :

Statistical parametric mapping

WM :

White matter

REFERENCES

  1. Anbeek, P., K. L. Vincken, M. J. van Osch, R. H. Bisschops, and J. van der Grond. Probabilistic segmentation of white matter lesions in MR imaging. NeuroImage 21:1037–1044, 2004.

    Article  PubMed  Google Scholar 

  2. Ashburner, J., and K. Friston. MRI sensitivity correction and tissue classification. NeuroImage 7:S706, 1998.

    Google Scholar 

  3. Ballard, D. H., and C. M. Brown. Computer Vision. New Jersey: Prentice-Hall, 1982.

    Google Scholar 

  4. Bedell, B. J., P. A. Narayana, and J. S. Wolinsky. A dual approach for minimizing false lesion classifications on magnetic resonance images. Magn. Reson. Med. 37:94–102, 1997.

    Article  PubMed  CAS  Google Scholar 

  5. Bland, J. M., and D. G. Altman. Comparing methods of measurement: Why plotting difference against standard method is misleading. Lancet 346:1085–1087, 1995.

    Article  PubMed  CAS  Google Scholar 

  6. Duda, R. O., P. E. Hart, and D. G. Stork. Pattern Classification. New York: John Wiley & Sons, 2001.

    Google Scholar 

  7. Gerig, G., O. Kubler, R. Kikinis, and F. A. Jolesz. Nonlinear anisotropic filtering of MRI data. IEEE Trans. Med. Imaging 11:221–232, 1992.

    Article  Google Scholar 

  8. Geurts, J. J. G., L. Bö, P. J. W. Pouwels, J. A. Castelijns, C. H. Polman, and F. Barkhof. Cortical lesions in multiple sclerois: Combined postmortem MR imaging and histopathology. Am. J. Neuroradiol. 26:572–577, 2005.

    PubMed  Google Scholar 

  9. He, R., and P. A. Narayana. Global optimization of mutual information: Application of three-dimensional retrospective registration of magnetic resonance images. Comput. Med. Imaging Graph. 26:277–292, 2002.

    Article  PubMed  Google Scholar 

  10. Krishnan, K., and M. S. Atkins. Segmentation of multiple sclerosis lesions in MRI—An image analysis approach. Proc. SPIE Med. Imaging 3338:1106–1116, 1998.

    Article  Google Scholar 

  11. Leemput, K. V., F. Maes, D. Vandermeulen, A. Colchester, and P. Suetens. Automated segmentation of multiple sclerosis lesions by model outlier detection. IEEE Trans. Med. Imaging 20:677–688, 2001.

    Article  PubMed  Google Scholar 

  12. Miller, D. H., M. Filippi, F. Fazekas, J. L. Frederiksen, P. M. Matthews, X. Montalban, and C. H. Polman. Role of magnetic resonance imaging within diagnostic criteria for multiple sclerosis. Ann. Neurol. 56:273–278, 2004.

    Article  PubMed  CAS  Google Scholar 

  13. Narayana, P. A., and A. Borthakur. Effect of radio frequency inhomogeneity correction on the reproducibility of intra-cranial volumes using MR image data. Magn. Reson. Med. 33:396–400, 1995.

    Article  PubMed  CAS  Google Scholar 

  14. Nyul, L. G., J. K. Udupa, and X. Zhang. New variants of a method of MRI scale standardization. IEEE Trans. Med. Imaging 19:143–150, 2000.

    Article  PubMed  CAS  Google Scholar 

  15. Perona, P., and J. Malik. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Machine Intell. 12:629–639, 1990.

    Article  Google Scholar 

  16. Udupa, J. K., L. Wei, S. Samarasekera, Y. Miki, M. A. van Buchem, and R. I. Grossman. Multiple sclerosis lesion quantitation using fuzzy-connectedness principles. IEEE Trans. Med. Imaging 16:598–609, 1997.

    Article  PubMed  CAS  Google Scholar 

  17. Wells, W. M., III, and W. E. L. Grimson. Adaptive segmentation of MRI data. IEEE Trans. Med. Imaging 15:429–442, 1996.

    Article  Google Scholar 

  18. Wolinsky, J. S., P. A. Narayana, and K. P. Johnson. Multiple Sclerosis Study Group and the MRI Analysis Center. United States open-label glatiramer acetate extension trial for relapsing multiple sclerosis: MRI and clinical correlates. Mult. Scler. 7:33–41, 2001.

    Article  PubMed  CAS  Google Scholar 

  19. Zhang, Y., M. Brady, and S. Smith. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization. IEEE Trans. Med. Imaging 20:45–57, 2001.

    Article  PubMed  CAS  Google Scholar 

  20. Zijdenbos, A. P., R. Forghani, and A. C. Evans. Automatic “pipeline” analysis of 3-D MRI data for clinical trials: application to multiple sclerosis. IEEE Trans. Med. Imaging 21:1280–1291, 2002.

    Article  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENT

This work is supported by National Institutes of Health Grant EB002095 to PAN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ponnada A. Narayana PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sajja, B.R., Datta, S., He, R. et al. Unified Approach for Multiple Sclerosis Lesion Segmentation on Brain MRI. Ann Biomed Eng 34, 142–151 (2006). https://doi.org/10.1007/s10439-005-9009-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-9009-0

Keywords

Navigation