Skip to main content

Advertisement

Log in

Morphology and Morphometry of Human Chronic Spinal Cord Injury Using Diffusion Tensor Imaging and Fuzzy Logic

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Diffusion tensor imaging (DTI) was performed on regions rostral to the injury site in four human subjects with chronic spinal cord injury (SCI) and equivalent regions in four neurologically intact subjects. Apparent diffusion coefficients were measured and compared between subjects. A fuzzy logic tissue classification algorithm was used to segment gray and white matter regions for morphometric analysis, including comparisons of cross-sectional areas of gray and white matter along with frontal and sagittal diameters. Results indicated a general decrease in both longitudinal and transverse diffusivity in the upper cervical segments of subjects with chronic SCI. Further, a decrease in the cross-sectional area of the entire spinal cord was observed in subjects with SCI, consistent with severe atrophy of the spinal cord. These observations have implications in tracking the progression of SCI from the acute to the chronic stages. We conclude that DTI with fuzzy logic tissue classification has potential for monitoring morphological changes in the spinal cord in people with SCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Alexander A. L., K. Hasan, G. Kindlmann, D. L. Parker, J. S. Tsuruda 2000 A geometric analysis of diffusion tensor measurements of the human brain. Magn. Reson. Med., 44(2), 283–291

    Article  PubMed  CAS  Google Scholar 

  2. Bammer R., M. Augustin, R. W. Prokesch, R. Stollberger, F. Fazekas 2002 Diffusion-weighted imaging of the spinal cord: interleaved echo-planar imaging is superior to fast spin-echo. J. Magn. Reson. Imaging 15, 364–373

    Article  PubMed  Google Scholar 

  3. Bammer R., F. Fazekas, M. Augustin, J. Simbrunner, S. Strasser-Fuchs, T. Seifert, R. Stollberger, H. P. Hartung 2000 Diffusion-weighted MR imaging of the spinal cord. AJNR Am. J. Neuroradiol. 21(3), 587–591

    PubMed  CAS  Google Scholar 

  4. Bammer, R., A. M. Herneth, S. E. Maier, K. Butts, R. W. Prokesch, H. M. Do, S. W. Atlas, and M. E. Moseley. Line scan diffusion imaging of the spine. Proc. Intl. Soc. Magn. Reson. Med. 102002

  5. Basser P. J., J. Mattiello, D. LeBihan 1994 Estimation of the effective self-diffusion tensor from the NMR spin echo. J. Magn. Reson. B 103(3), 247–254

    Article  PubMed  CAS  Google Scholar 

  6. Basser P. J., J. Mattiello, D. LeBihan 1994 MR diffusion tensor spectroscopy and imaging. Biophys. J. 66(1), 259–267

    PubMed  CAS  Google Scholar 

  7. Bernstein M. A., K. F. King, X. J. Zhou 2004 Handbook of MRI Pulse Sequences. San Diego, CA: Elsevier Academic Press

    Google Scholar 

  8. Blight A. R., V. Decrescito 1986 Morphometric analysis of experimental spinal cord injury in the cat: the relation of injury intensity to survival of myelinated axons. Neuroscience 19(1), 321–341

    Article  PubMed  CAS  Google Scholar 

  9. Buss A., G. A. Brook, B. A. Kakulas, D. Martin, R. Franzen, J. Schoenen, J. Noth, A. B. Schmitt 2004 Gradual loss of myelin and formation of an astrocytic scar during Wallerian degeneration in the human spinal cord. Brain 127, 34–44

    Article  PubMed  CAS  Google Scholar 

  10. Cercignani M., M. A. Horsfield, F. Agosta, M. Filippi 2003 Sensitivity-encoded diffusion tensor MR imaging of the cervical cord. AJNR Am. J. Neuroradiol. 24(6), 1254–1256

    PubMed  Google Scholar 

  11. Clark C. A., G. J. Barker, P. S. Tofts 1999 Magnetic resonance diffusion imaging of the human cervical spinal cord in vivo. Magn. Reson. Med. 41(6), 1269–1273

    Article  PubMed  CAS  Google Scholar 

  12. Cooke F. J., A. M. Blamire, D. N. Manners, P. Styles, B. Rajagopalan 2004 Quantitative proton magnetic resonance spectroscopy of the cervical spinal cord. Magn. Reson. Med. 51, 1122–1128

    Article  PubMed  CAS  Google Scholar 

  13. Deo A. A., R. J. Grill, K. Hasan, P. A. Narayana 2006 In vivo serial diffusion tensor imaging of experimental spinal cord injury. J. Neurosci. Res. 83(5), 801–810

    Article  PubMed  CAS  Google Scholar 

  14. Ellingson B. M., J. L. Ulmer, B. D. Schmit 2006 A new technique for imaging the human spinal cord in vivo. Biomed. Sci. Instrum. 42, 255–260

    PubMed  Google Scholar 

  15. Ellingson B. M., J. L. Ulmer, B. D. Schmit 2007 Gray and white matter delineation in the human spinal cord using diffusion tensor imaging and fuzzy logic. Acad. Radiol. 14(7), 847–858

    Article  PubMed  Google Scholar 

  16. Elliott, H. C. 1945 Cross-sectional diameters and areas of human spinal cord. Anat. Rec. 93, 287

    Article  Google Scholar 

  17. Elrai S., M. Souei Mhiri, N. Arifa Achour, K. Mrad Daly, R. Ben Hmida, H. Jemni Gharbi, K. Tlili Graiess 2006 MR imaging in spinal cord injury. J. Radiol. 87, 121–126

    PubMed  CAS  Google Scholar 

  18. Enzmann D., G. T. Augustyn 1989 Improved MR images of brain with use of a gated, flow-compensated, variable-bandwidth pulse sequence. Radiology 155, 437–442

    Google Scholar 

  19. Facon D., A. Ozanne, P. Fillard, J. Lepeintre, C. Tournoux-Facon, D. Ducreux 2005 MR diffusion tensor imaging and fiber tracking in spinal cord compression. AJNR Am. J. Neuroradiol. 26(6), 1587–1594

    PubMed  Google Scholar 

  20. Ford J. C., D. B. Hackney, D. C. Alsop, H. Jara, P. M. Joseph, C. M. Hand, P. Black 1994 MRI characterization of diffusion coefficients in a rat spinal cord injury model. Magn. Reson. Med. 31(5), 488–494

    Article  PubMed  CAS  Google Scholar 

  21. Ford J. C., D. B. Hackney, E. Lavi, M. Phillips, U. Patel 1998 Dependence of apparent diffusion coefficients on axonal spacing, membrane permeability, and diffusion time in spinal cord white matter. J. Magn. Reson. Imaging 8(4), 775–782

    Article  PubMed  CAS  Google Scholar 

  22. Fujiwara K., K. Yonenobu, K. Hiroshima, S. Ebara, K. Yamashita, K. Ono 1988 Morphometry of the cervical spinal cord and its relation to pathology in cases with compression myelopathy. SPINE 13(11), 1212–1216

    Article  PubMed  CAS  Google Scholar 

  23. Hanley J. A., B. J. McNeil 1982 The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143(1), 29–36

    PubMed  CAS  Google Scholar 

  24. Holder C. A., R. Muthupillai, S. Mukundan Jr., J. D. Eastwood, P. A. Hudgin 2000 Diffusion-weighted MR imaging of the normal human spinal cord in vivo. AJNR Am. J. Neuroradiol. 21(10), 1799–1806

    PubMed  CAS  Google Scholar 

  25. Inglis B. A., L. Yang, E. D. Wirth 3rd, D. Plant, T. H. Mareci 1997 Diffusion anisotropy in excised normal rat spinal cord measured by NMR microscopy. Magn. Reson. Imaging 15(4), 441–450

    Article  PubMed  CAS  Google Scholar 

  26. Kameyama T., Y. Hashizume, T. Ando, A. Takahashi 1994 Morphometry of the normal cadaveric cervical spinal cord. SPINE 19(18), 2077–2081

    Article  PubMed  CAS  Google Scholar 

  27. Key A., G. Retzius 1875 Studien in der Anatomie des Nervensystems und des Bindegewebes. Stockholm: P.A. Norstedt & Soner

    Google Scholar 

  28. Kitzman, P. 2005 Alterations in axial motoneuron morphology in the spinal cord injured spastic cat. Exp. Neurol. 192(1), 100–108

    Article  PubMed  Google Scholar 

  29. Ko H. Y., J. H. Park, Y. B. Shin, S. Y. Baek 2004 Gross quantitative measurements of spinal cord segments in human. Spinal Cord 42, 35–40

    Article  PubMed  Google Scholar 

  30. Krassioukov A., L. Weaver 1996 Morphological changes in sympathetic preganglionic neurons after spinal cord injury in rats. Neuroscience 70(1), 211–225

    Article  PubMed  CAS  Google Scholar 

  31. Kreutzberg G. W., P. Schubert 1971 Volume changes in the axon during regeneration. Acta Neuropath. (Berl.) 17, 220–226

    Article  CAS  Google Scholar 

  32. Kuker W., M. Weller, U. Klose, H. Krapf, J. Dichgans, T. Nagele 2004 Diffusion-weighted MRI of spinal cord infarction—high resolution imaging and time course of diffusion abnormality. J. Neurol. 251(7), 818–824

    Article  PubMed  Google Scholar 

  33. Mamata H., F. A. Jolesz, S. E. Maier 2005 Apparent diffusion coefficient and fractional anisotropy in spinal cord: age and cervical spondylosis-related changes. J. Magn. Reson. Imaging 22(1), 38–43

    Article  PubMed  Google Scholar 

  34. Mamdani E. H., S. Assilian 1975 An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man. Mach. Stud. 7(1), 1–13

    Article  Google Scholar 

  35. Marino R. J., T. Barros, F. Biering-Sorenson, S. P. Burns, W. H. Donovan, D. E. Graves, M. Haak, L. M. Hudson, M. M. Priebe 2003 International standards for neurological classification of spinal cord injury. J. Spinal Cord Med. 26, S50–S56

    PubMed  Google Scholar 

  36. Murphy B. P., G. P. Zientara, P. S. Huppi, S. E. Maier, P. D. Barnes, F. A. Jolesz, J. J. Volpe 2001 Line scan diffusion tensor MRI of the cervical spinal cord in preterm infants. J. Magn. Reson. Imaging, 13(6), 949–953

    Article  PubMed  CAS  Google Scholar 

  37. Nagayoshi K., S. Kimura, M. Ochi, K. Hayashi, T. Okimoto, T. Wakebe, K. Saiki 2000 Diffusion-weighted echo planar imaging of the normal human cervical spinal cord. J. Comput. Assist. Tomogr. 24(3), 482–485

    Article  PubMed  CAS  Google Scholar 

  38. Nashmi R., M. G. Fehlings 2001 Changes in axonal physiology and morphology after chronic compressive injury of the rat thoracic spinal cord. Neuroscience 104(1), 235–251

    Article  PubMed  CAS  Google Scholar 

  39. Nordqvist, L. 1964 The sagittal diameter of the spinal cord and subarachnoid space in different age groups (A roentgenographic post-mortem study). Acta Radiol. 227(Suppl), 1–96

    Google Scholar 

  40. Pierpaoli C., P. J. Basser 1996 Toward a quantitative assessment of diffusion anisotropy. Magn. Reson. Med. 36, 893–906

    Article  PubMed  CAS  Google Scholar 

  41. Pierpaoli C., P. Jezzard, P. J. Basser, A. Barnett, G. Di Chiro 1996 Diffusion tensor MR imaging of the human brain. Radiology 201(3), 637–648

    PubMed  CAS  Google Scholar 

  42. Potter K., A. Saifuddin 2003 MRI of chronic spinal cord injury. Br. J. Radiol. 76(905), 347–352

    Article  PubMed  CAS  Google Scholar 

  43. Reese T. G., O. Heid, R. M. Weisskoff, V. J. Wedeen 2003 Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo. Magn. Reson. Med. 49(1), 177–182

    Article  PubMed  CAS  Google Scholar 

  44. Ries M., R. A. Jones, V. Dousset, C. T. Moonen 2000 Diffusion tensor MRI of the spinal cord. Magn. Reson. Med. 44(6), 884–892

    Article  PubMed  CAS  Google Scholar 

  45. Robertson R. L., S. E. Maier, R. V. Mulkern, S. Vajapayam, C. D. Robson, P. D. Barnes 2000 MR Line-scan diffusion imaging of the spinal cord in children. AJNR: Am. J. Neuroradiol. 21, 1344–1348

    CAS  PubMed  Google Scholar 

  46. Sagiuchi T., H. Iida, S. Tachibana, M. Kusumi, K. Shinichi, K. Fujii 2003 Diffusion-weighted MRI in anterior spinal artery stroke of the cervical spinal cord. J. Comput. Assist. Tomogr. 27(3), 410–414

    Article  PubMed  Google Scholar 

  47. Schwartz E. D., E. T. Cooper, Y. Fan, A. F. Jawad, C. L. Chin, J. Nissanov, D. B. Hackney 2005 MRI diffusion coefficients in spinal cord correlate with axon morphometry. Neuroreport 16(1), 73–76

    Article  PubMed  Google Scholar 

  48. Schwartz E. D., D. B. Hackney 2003 Diffusion-weighted MRI and the evaluation of spinal cord axonal integrity following injury and treatment. Exp. Neurol. 184(2), 570–589

    Article  PubMed  Google Scholar 

  49. Sherman J. L., P. Y. Nassaux, C. M. Citrin 1990 Measurements of the normal cervical spinal cord on MR imaging. AJNR: Am. J. Neuroradiol. 11, 369–372

    CAS  PubMed  Google Scholar 

  50. Sykova E., L. Vargova, S. Prokopova, Z. Simonova 1999 Glial swelling and astrogliosis produce diffusion barriers in the rat spinal cord. Glia 25, 56–70

    Article  PubMed  CAS  Google Scholar 

  51. Takahashi M., D. B. Hackney, G. Zhang, S. L. Wehrli, A. C. Wright, W. O’Brien, H. Uematsu, F. W. Wehrli, M. E. Selzer 2002 Magnetic resonance microimaging of intraaxonal water diffusion in live excised lamprey spinal cord. Proc. Nat. Acad. Sci. 99(25), 16192–16196

    Article  PubMed  CAS  Google Scholar 

  52. Thijssen H. O. M., A. Keyser, M. W. M. Horstink, E. Meijer 1979 Morphology of the cervical spinal cord on computed myelography. Neuroradiology 18, 57–62

    Article  PubMed  CAS  Google Scholar 

  53. Totoiu M. O., H. S. Keirstead 2005 Spinal cord injury is accompanied by chronic progressive demyelination. J. Comp. Neurol. 486(4), 373–383

    Article  PubMed  Google Scholar 

  54. Wheeler-Kingshott C. A. M., S. J. Hickman, G. J. M. Parker, O. Ciccarelli, M. R. Symms, D. H. Miller, G. J. Barker 2002 Investigating cervical spinal cord structure using axial diffusion tensor imaging. Neuroimage 16(1), 93–102

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian D. Schmit.

Appendix A: Mathematics of FIS Used for Spinal Cord Tissue Classification

Appendix A: Mathematics of FIS Used for Spinal Cord Tissue Classification

The three anisotropy indices defined in Eqs. (1)–(3) were stored in a separate input matrix defined as \( \varvec{\upchi} = {\left[ {\begin{array}{*{20}c} {{\psi _{1} }} & {{\psi _{2} }} & {{\psi _{3} }} \\ \end{array} } \right]} \). For each index, Gaussian membership functions were created to reflect the distributions of each region of interest (GM, WM, and CSF) for use in a Mamdani-type FIS.34 The membership functions represent the degree of membership a particular index value has in a specific region of interest (tissue type). The process of calculating the degree of membership a particular index value has in a particular region of interest is termed fuzzification and consists of normalized values from 0 to 1. The fuzzification matrix is defined as

$$ \varvec{\upmu}{\left( \varvec{\upchi} \right)} = {\left[ {\begin{array}{*{20}c} {{\varvec{\upmu}_{{{\text{CSF}}}} {\left( \varvec{\upchi} \right)}}} & {{\varvec{\upmu}_{{{\text{GM}}}} {\left( \varvec{\upchi} \right)}}} & {{\varvec{\upmu}_{{{\text{WM}}}} {\left( \varvec{\upchi} \right)}}} \\ \end{array} } \right]} = {\left[ {\begin{array}{*{20}c} {{\mu _{{{\text{CSF}}}} {\left( {\psi _{1} } \right)}}} & {{\mu _{{{\text{GM}}}} {\left( {\psi _{1} } \right)}}} & {{\mu _{{{\text{WM}}}} {\left( {\psi _{1} } \right)}}} \\ {{\mu _{{{\text{CSF}}}} {\left( {\psi _{2} } \right)}}} & {{\mu _{{{\text{GM}}}} {\left( {\psi _{2} } \right)}}} & {{\mu _{{{\text{WM}}}} {\left( {\psi _{2} } \right)}}} \\ {{\mu _{{{\text{CSF}}}} {\left( {\psi _{3} } \right)}}} & {{\mu _{{{\text{GM}}}} {\left( {\psi _{3} } \right)}}} & {{\mu _{{{\text{WM}}}} {\left( {\psi _{3} } \right)}}} \\ \end{array} } \right]}, $$
(A.1)

where

$$ \mu _{{{\text{tissue}}}} {\left( {{\text{index}}} \right)} = \frac{1} {{{\sqrt {2\pi s_{{{\text{index,tissue}}}} } }}}\;{\text{exp}}\left ( \frac{{ -({\text{index}} - m_{{{\text{index,tissue}}}} )^{2} }} {{2 \cdot s_{{{\text{index,tissue}}}} }} \right)$$

is the Gaussian membership function for a specific anisotropy index and tissue type, m index,tissue is the sampled mean value for a particular index and tissue type obtained with the histological template, and s index,tissue is the sampled standard deviation for a particular index and tissue type obtained with the histological template.

Once the membership of a particular index value (ψ1, ψ2 or ψ3), for a particular tissue type (CSF, GM or WM), was calculated, we determined the tissue type physically represented in the particular voxel of interest. Since all three anisotropy indices must agree on the type of tissue represented in the voxel, a logical ‘and’ operation for each column in the fuzzification matrix was performed by finding the product of the degree of membership for all three anisotropy indices. Note that if the value of membership for a particular tissue type was high for all three anisotropy indices, the result after the product was high, thus providing confidence about the classification of this voxel as that particular tissue type. The degree of membership as a particular tissue type, for a specific voxel, was defined as

$$ \varvec{\upbeta} = {\text{and}}{\left( {\varvec{\upmu}{\left( \varvec{\upchi} \right)}} \right)} = {\left[ {\begin{array}{*{20}c} {{{\text{and}}{\left( {\varvec{\upmu}_{{{\text{CSF}}}} {\left( \varvec{\upchi} \right)}} \right)}}} & {{{\text{and}}{\left( {\varvec{\upmu}_{{{\text{GM}}}} {\left( \varvec{\upchi} \right)}} \right)}}} & {{{\text{and}}{\left( {\varvec{\upmu}_{{{\text{WM}}}} {\left( \varvec{\upchi} \right)}} \right)}}} \\ \end{array} } \right]}, $$
(A.2)

where

$$ {\text{and}}{\left( {\varvec{\upmu}_{{{\text{tissue}}}} {\left( \varvec{\upchi} \right)}} \right)} = {\prod\limits_{ \in {\text{ index}}} {\mu _{{{\text{tissue}}}} {\left( {{\text{index}}} \right)}} }. $$
(A.3)

The degree of membership of a specific voxel as a particular tissue type was then mapped to the new variable space termed the fuzzy anisotropy index (FAI) by first defining a set of output membership functions. To allow for a specific voxel being a combination of tissue types, as occurs with partial volume effects, we defined an output membership function matrix as

$$ \varvec{\upxi}(y) = {\left[ {\begin{array}{*{20}c} {{\xi _{{{\text{CSF}}}} (y)}} & {{\xi _{{{\text{GM}}}} (y)}} & {{\xi _{{{\text{WM}}}} (y)}} \\ \end{array} } \right]}, $$
(A.4)

where

$$ \xi _{{{\text{CSF}}}} (y) = \left\{ {\begin{array}{*{20}c} {{ - 2y + 1}} \\ {{\text{0}}} \\ \end{array} } \right.{\text{ }}\begin{array}{*{20}c} {{{\text{for 0}} \le y{\text{ }} \le {\text{0}}{\text{.5}}}} \\ {{{\text{for 0}}{\text{.5}} \le y{\text{ }} \le {\text{1}}}} \\ \end{array} , $$
(A.5)
$$ \xi _{{{\text{GM}}}} (y) = \left\{ {\begin{array}{*{20}c} {{2y}} \\ {{ - 2y - 2}} \\ \end{array} } \right.{\text{ }}\begin{array}{*{20}c} {{{\text{for 0}} \le y{\text{ }} \le {\text{0}}{\text{.5}}}} \\ {{{\text{for 0}}{\text{.5}} \le y{\text{ }} \le {\text{1}}}} \\ \end{array} , $$
(A.6)
$$ \xi _{{{\text{WM}}}} (y) = \left\{ {\begin{array}{*{20}c} {0} \\ {{2y - 1}} \\ \end{array} } \right.{\text{ }}\begin{array}{*{20}c} {{{\text{for 0}} \le y{\text{ }} \le {\text{0}}{\text{.5}}}} \\ {{{\text{for 0}}{\text{.5}} \le y{\text{ }} \le {\text{1}}}} \\ \end{array} , $$
(A.7)

and y is the output variable termed the fuzzy anisotropy. To perform the mapping operation, the minimum between the membership grade for each tissue type, \( \varvec{\upbeta}\), and the output membership function for that particular tissue type, \( \varvec{\upxi}{\left( y \right)} \), must be calculated. The membership grade for each tissue type was assumed constant for all values of the fuzzy anisotropy, y, thus \( \varvec{\upbeta}{\left( y \right)} = \varvec{\upbeta} \). The mapped distributions were defined as

$$ \varvec{\upeta}{\left( y \right)} = {\left[ {\begin{array}{*{20}c} {{\eta _{{{\text{CSF}}}} {\left( y \right)}}} & {{\eta _{{{\text{GM}}}} {\left( y \right)}}} & {{\eta _{{{\text{WM}}}} {\left( y \right)}}} \\ \end{array} } \right]} = \min {\left( {\varvec{\upbeta},\varvec{\upxi}{\left( y \right)}} \right)}, $$
(A.8)

where

$$ \eta _{{{\text{tissue}}}} {\left( y \right)} = \min {\left( {{\text{and}}{\left( {\varvec{\upmu}_{{{\text{tissue}}}} {\left( \varvec{\upchi} \right)}} \right)},\xi _{{{\text{tissue}}}} (y)} \right)}. $$
(A.9)

The result of the mapping operation was a row vector, \( \varvec{\upeta}{\left( y \right)} \), containing three functions of the fuzzy anisotropy for each tissue type, \( \eta _{{{\text{tissue}}}} {\left( y \right)} \). A single value for the FAI was computed by first summing the three distributions in \( \varvec{\upeta}{\left( y \right)} \) and then finding the centroid location along y. The FAI was defined as

$$ {\text{FAI}} = {\text{centroid}}{\left( {\varvec{\upeta}{\left( y \right)}{\varvec{\upvarphi}}} \right)}, $$
(A.10)

where \( {\varvec{\upvarphi }} = {\left[ {\begin{array}{*{20}c} {1} & {1} & {1} \\ \end{array} } \right]}^{T} \) is used as the matrix sum. The resulting FAI was used to classify gray matter regions and intact white matter tracts. The Fuzzy Logic Toolbox in MATLAB (MathWorks, Inc., Natick, MA) was used for implementation of the FIS.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellingson, B.M., Ulmer, J.L. & Schmit, B.D. Morphology and Morphometry of Human Chronic Spinal Cord Injury Using Diffusion Tensor Imaging and Fuzzy Logic. Ann Biomed Eng 36, 224–236 (2008). https://doi.org/10.1007/s10439-007-9415-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-007-9415-6

Keywords

Navigation