Skip to main content
Log in

X-ray Velocimetry and Haemodynamic Forces Within a Stenosed Femoral Model at Physiological Flow Rates

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

High resolution in vivo velocity measurements within the cardiovascular system are essential for accurate calculation of vessel wall shear stress, a highly influential factor for the progression of arterial disease. Unfortunately, currently available techniques for in vivo imaging are unable to provide the temporal resolution required for velocity measurement at physiological flow rates. Advances in technology and improvements in imaging systems are allowing a relatively new technique, X-ray velocimetry, to become a viable tool for such measurements. This study investigates the haemodynamics of pulsatile blood flow in an optically opaque in vitro model at physiological flow rates using X-ray velocimetry. The in vitro model, an asymmetric stenosis, is designed as a 3:1 femoral artery with the diameter and flow rate replicating vasculature of a mouse. Velocity measurements are obtained over multiple cycles of the periodic flow at high temporal and spatial resolution (1 ms and 29 μm, respectively) allowing accurate measurement of the velocity gradients and calculation of the wall shear stress. This study clearly illustrates the capability of in vitro X-ray velocimetry, suggesting it as a possible measurement technique for future in vivo vascular wall shear stress measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Adrian, R. J. Particle-imaging techniques for experimental fluid-Mechanics. Annu. Rev. Fluid Mech. 23:261–304, 1991.

    Article  Google Scholar 

  2. Augst, A. D., D. C. Barratt, A. D. Hughes, F. P. Glor, S. A. M. Thom and X. Y. Xu. Accuracy and reproducibility of CFD predicted wall shear stress using 3D ultrasound images. J. Biomech. Eng. Trans. ASME 125:218–222, 2003.

    Article  CAS  Google Scholar 

  3. Baek H., M. V. Jayaraman, and G. E. Karniadakis. Wall shear stress and pressure distribution on aneurysms and infundibulae in the posterior communicating artery bifurcation. Ann. Biomed. Eng. 37(12):2469–2487, 2009.

    Article  PubMed  Google Scholar 

  4. Benveniste, H., and S. Blackband. MR microscopy and high resolution small animal MRI: applications in neuroscience research. Prog. Neurobiol. 67:393–420, 2002.

    Article  PubMed  Google Scholar 

  5. Cheng, C., D. Tempel, R. van Haperen, A. van der Bann, F. Grosveld, M. J. A. P. Daemen, R. Krams, and R. de Crom. Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress. Circulation 113:2744–2753, 2006.

    Article  PubMed  Google Scholar 

  6. Chytilova, E., J. Malik, Z. Kasalova, R. Dolezalova, T. Stulc, and R. Ceska. Lower wall shear rate of the common carotid artery in treated type 2 diabetes mellitus with metabolic syndrome. Physiol. Res. 58:185–191, 2009.

    PubMed  CAS  Google Scholar 

  7. Davis, T. J., D. Gao, T. E. Gureyev, A. W. Stevenson, and S. W. Wilkins. Phase-contrast imaging of weakly absorbing materials using hard X-rays. Nature 373:595–598, 1995.

    Article  CAS  Google Scholar 

  8. Dubsky, S., R. A. Jamison, S. C. Irvine, K. K. W. Siu, K. Hourigan, and A. Fouras. Computed tomographic X-ray velocimetry. Appl. Phys. Lett. 96:023702, 2010.

    Article  Google Scholar 

  9. Dubsky, S., R. A. Jamison, S. P. A. Higgins, K. K. W. Siu, K. Hourigan, and A. Fouras. Computed tomographic X-ray velocimetry for simultaneous 3D measurement of velocity and geometry in opaque vessels. Exp. Fluids, 2010. doi:10.1007/s00348-010-1006-x

  10. Ford, M. D., H. N. Nikolov, J. S. Milner, S. P. Lownie, E. M. Demont, W. Kalata, F. Loth, D. W. Holdsworth, and D. A. Steinman. PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models. J. Biomech. Eng. Trans. ASME 130(2):021015, 2008.

    Article  Google Scholar 

  11. Forouhar, A. S., M. Liebling, A. Hickerson, A. Nasiraei-Moghaddam, H. Tsai, J. R. Hove, S. E. Fraser, M. E. Dickinson, and M. Gharib. The embryonic vertebrate heart tube is a dynamic suction pump. Science 312:751–753, 2006.

    Article  PubMed  CAS  Google Scholar 

  12. Fouras, A., J. Dusting, R. Lewis, and K. Hourigan. Three-dimensional synchrotron X-ray particle image velocimetry. J. Appl. Phys. 102:064916, 2007.

    Article  Google Scholar 

  13. Fouras, A., M. J. Kitchen, S. Dubsky, R. A. Lewis, S. B. Hooper, and K. Hourigan. The past, present, and future of X-ray technology for in vivo imaging of function and form. J. Appl. Phys. 105:102009, 2009.

    Article  Google Scholar 

  14. Fouras, A., D. Lo Jacono, and K. Hourigan. Target-free stereo PIV: a novel technique with inherent error estimation and improved accuracy. Exp. Fluids 44(2):317–329, 2008.

    Article  Google Scholar 

  15. Fouras, A., and J. Soria. Accuracy of out-of-plane vorticity measurements derived from in-plane velocity field data. Exp. Fluids 25:409–430, 1998.

    Article  Google Scholar 

  16. Griffith, M. D., T. Leweke, M. C. Thompson, and K. Hourigan. Pulsatile flow in stenotic geometries: flow behaviour and stability. J. Fluid Mech. 622:291–320, 2009.

    Article  Google Scholar 

  17. Hoi, Y., S. H. Woodward, M. Kim, D. B. Taulbee, and H. Meng. Validation of CFD simulations of cerebral aneurysms with implication of geometric variations. J. Biomech. Eng. Trans. ASME 128:844–851, 2006.

    Article  Google Scholar 

  18. Hove, J. R., R. W. Koster, A. S. Forouhar, G. Acevedo-Bolton, S. E. Fraser, and M. Gharib. Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature 421:172–177, 2003.

    Article  PubMed  CAS  Google Scholar 

  19. Irvine, S. C., D. M. Paganin, S. Dubsky, R. A. Lewis, and A. Fouras. Phase retrieval for improved three-dimensional velocimetry of dynamic X-ray blood speckle. Appl. Phys. Lett. 93:153901, 2008.

    Article  Google Scholar 

  20. Irvine, S. C., D. M. Paganin, A. Jamison, S. Dubsky, and A. Fouras. Vector tomographic X-ray phase contrast velocimetry utilizing dynamic blood speckle. Opt. Exp. 18:2368–2379, 2010.

    Article  CAS  Google Scholar 

  21. Kim, G. B., and S. J. Lee. X-ray PIV measurements of blood flows without tracer particles. Exp. Fluids 41:195–200, 2006.

    Article  Google Scholar 

  22. Kim, G. B, N. Y. Lim, and S. J. Lee. Hollow microcapsules for sensing micro-scale flow motion in X-ray imaging method. Microfluid. Nanofluid. 6:419–424, 2009.

    Article  CAS  Google Scholar 

  23. Kim, M., D. B. Taulbee, M. Tremmel, and H. Meng. Comparison of two stents in modifying cerebral aneurysm hemodynamics. Ann. Biomed. Eng. 36(5):726–741, 2008.

    Article  PubMed  Google Scholar 

  24. Ku, J. P., M. T. Draney, F. R. Arko, A. Lee, F. P. Chan, N. Pelc, C. K. Zarins, and C. A. Taylor. In vivo validation of numerical prediction of blood flow in arterial bypass grafts. Ann. Biomed. Eng. 30:743–752, 2002.

    Article  PubMed  Google Scholar 

  25. Lee, J. Y., H. S. Ji, and S. J. Lee. Micro-PIV measurements of blood flow in extraembryonic blood vessels of chicken embryos. Physiol. Meas. 28:1149–1162, 2007.

    Article  PubMed  Google Scholar 

  26. Lee, S. J., S. Y. Jung, and S. Ahn. Flow tracing microparticle sensors designed for enhanced X-ray contrast. Biosens. Bioelectron. 25:1571–1578, 2010.

    Article  PubMed  CAS  Google Scholar 

  27. Lee, S. J., and G. B. Kim. X-ray particle image velocimetry for measuring quantitative flow information inside opaque objects. J. Appl. Phys. 94:3620–3623, 2003.

    Article  CAS  Google Scholar 

  28. Lee, S. J., and G. B. Kim. Synchrotron microimaging technique for measuring the velocity fields of real blood flows. J. Appl. Phys. 97:064701, 2005

    Article  Google Scholar 

  29. Li, M. X., J. J. Beech-Brandt, L. R. John, P. R. Hoskins, and W. J. Easso. Numerical analysis of pulsatile blood flow and vessel wall mechanics in different degrees of stenoses. J. Biomech. 40:3715–3724, 2007.

    Article  PubMed  CAS  Google Scholar 

  30. Morgan, K. S., S. C. Irvine, Y. Suzuki, K. Uesugi, A. Takeuchi, D. M. Paganin, and K. K. W. Siu. Measurement of hard X-ray coherence in the presence of a rotating random-phase-screen diffuser. Opt. Commun. 283:216–225, 2010.

    Article  CAS  Google Scholar 

  31. Mouse Genome Sequencing Consortium. Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562, 2002.

    Google Scholar 

  32. Moyle, K. R., L. Antiga, and D. A. Steinman. Inlet conditions for image-based CFD models of the carotid bifurcation: Is it reasonable to assume fully developed flow? J. Biomech. Eng. Trans. ASME 128:371–379, 2006.

    Article  Google Scholar 

  33. Nesbitt, W. S., E. Westein, F. J. Tovar-Lopez, E. Tolouei, A. Mitchell, J. Fu, J. Carberry, A. Fouras, and S. P. Jackson. A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nat. Med. 15:665–673, 2009.

    Article  PubMed  CAS  Google Scholar 

  34. Poelma, C., V. Heiden, B. P. Hiereck, R. E. Poelmann, and J. Westerweel. Measurements of the wall shear stress distribution in the outflow tract of an embryonic chicken heart. J. R. Soc. Interface 7:91–103, 2010.

    Google Scholar 

  35. Poelma, C., J. M. Mari, N. Foin, M. X. Tang, R. Krams, C. G. Caro, P. D. Weinberg, and J. Westerweel. 3D Flow reconstruction using ultrasound PIV. Exp. Fluids, 2009. doi:10.1007/s00348-009-0781-8.

  36. Poelma, C., P. Vennemann, R. Lindken, and J. Westerweel. In vivo blood flow and wall shear stress measurements in the vitelline network. Exp. Fluids 45:703–713, 2008

    Article  CAS  Google Scholar 

  37. Reneman, R. S., T. Arts, and A. P. G. Hoeks. Wall shear stress–an important determinant of endothelial cell function and structure—in the arterial system in vivo. J. Vasc. Res. 43:251–269, 2006.

    Article  PubMed  Google Scholar 

  38. Rosencranz, R., and S. A. Bogen. Clinical laboratory measurement of serum, plasma, and blood viscosity. Pathol. Patterns Rev. 125:S78–S86, 2006.

    Article  Google Scholar 

  39. Ross R. Cell biology of atherosclerosis. Annu. Rev. Physiol. 57:791–804, 1995.

    Article  PubMed  CAS  Google Scholar 

  40. Sheard, G. J. Flow dynamics and wall shear-stress variation in a fusiform aneurysm. J. Eng. Math. 64:379–390, 2009.

    Article  CAS  Google Scholar 

  41. Smith, M. L., D. S. Long, E. R. Damiano, and K. Ley. Near-wall μ-PIV reveals a hydrodynamically relevant endothelial surface layer in venules in vivo. Biophys. J. 85:637–645, 2003.

    Article  PubMed  CAS  Google Scholar 

  42. Sugii, Y., S. Nishio, and K. Okamoto. In vivo PIV measurement of red blood cell velocity field in microvessels considering mesentery motion. Physiol. Meas. 23:403–416, 2002.

    Article  PubMed  Google Scholar 

  43. Texon M. Hemodynamic concept of atherosclerosis. Am. J. Cardiol. 5:291–294, 1960.

    Article  Google Scholar 

  44. Theunissen, R., F. Scarano, and M. L. Riethmuller. Spatially adaptive PIV interrogation based on data ensemble. Exp. Fluids 48:875–887, 2010.

    Article  CAS  Google Scholar 

  45. Thomas S. M. The current role of catheter angiography. Imaging 13:366–375, 2001.

    Google Scholar 

  46. Vennemann, P., K. T. Kiger, R. Lindken, B. C. Groenendijk, S. Stekelenburg-de Vos, T. L. ten Hagen, N. T. Ursem, R. E. Poelmann, J. Westerweel, and B. P. Hierck. In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart. J. Biomech. 39:1191–1200, 2006.

    Article  PubMed  Google Scholar 

  47. Vennemann, P., R. Lindken, and J. Westerweel. In vivo whole-field blood velocity measurement techniques. Exp. Fluids 42:495–511, 2007.

    Article  Google Scholar 

  48. Wang, Y., X. Liu, K. Im, W. Lee, J. Wang, K. Fezzaa, D. L. S. Hung, and J. R. Winkelman. Ultrafast X-ray study of dense-liquid-jet flow dynamics using structure-tracking velocimetry. Nat. Phys. 4:305–309, 2008.

    Article  CAS  Google Scholar 

  49. Wen, C. Y., A. S. Yang, L. Y. Tseng, and J. W. Chai. Investigation of pulsatile flowfield in healthy thoracic aorta models. Ann. Biomed. Eng. 38(2):391–402, 2010.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of the Japan Synchrotron Radiation Research Institute (JASRI) (under Proposal No. SP2009B1910). The authors would like to thank Yoshio Suzuki, Akihisa Takeuchi and Kentaro Uesugi (SPring-8/JASRI) for their assistance with the experiments. Support from the Australian Research Council (Grant Nos. DP0877327, DP0987643) is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Fouras.

Additional information

Associate Editor Konstantinos Konstantopoulos oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jamison, R.A., Dubsky, S., Siu, K.K.W. et al. X-ray Velocimetry and Haemodynamic Forces Within a Stenosed Femoral Model at Physiological Flow Rates. Ann Biomed Eng 39, 1643–1653 (2011). https://doi.org/10.1007/s10439-011-0260-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0260-2

Keywords

Navigation