Skip to main content
Log in

Investigating the Influence of Haemodynamic Stimuli on Intracranial Aneurysm Inception

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

We propose a novel method to reconstruct the hypothetical geometry of the healthy vasculature prior to intracranial aneurysm (IA) formation: a Frenet frame is calculated along the skeletonization of the arterial geometry; upstream and downstream boundaries of the aneurysmal segment are expressed in terms of the local Frenet frame basis vectors; the hypothetical healthy geometry is then reconstructed by propagating a closed curve along the skeleton using the local Frenet frames so that the upstream boundary is smoothly morphed into the downstream boundary. This methodology takes into account the tortuosity of the arterial vasculature and requires minimal user subjectivity. The method is applied to 22 clinical cases depicting IAs. Computational fluid dynamic simulations of the vasculature without IA are performed and the haemodynamic stimuli in the location of IA formation are examined. We observe that locally elevated wall shear stress (WSS) and gradient oscillatory number (GON) are highly correlated (20/22 for WSS and 19/22 for GON) with regions susceptible to sidewall IA formation whilst haemodynamic indices associated with the oscillation of the WSS vectors have much lower correlations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Notes

  1. The Circle of Willis is a circle of arteries at the base of the brain. All the principal arteries that supply blood to the cerebral hemispheres of the brain branch off from the Circle of Willis.

References

  1. Aird, W. C. Spatial and temporal dynamics of the endothelium. J. Thrombosis Haemost. 3(7):1392–1406, 2005.

    Article  CAS  Google Scholar 

  2. Alnaes, M. S., J. Isaksen, K. A. Mardal, B. Romner, M. K. Morgan, T. L. Ingebrigtsen. Computation of hemodynamics in the circle of willis. Stroke 38:2500–2505, 2007.

    Article  PubMed  Google Scholar 

  3. Aoki, T., and M. Nishimura. Molecular mechanism of cerebral aneurysm formation focusing on NF-κB as a key mediator of inflammation. J. Biorheol. 24(1):16–21, 2010.

    Article  Google Scholar 

  4. Augst, A. D., B. Ariff, S. A. G. McG Thom, X. Y. Xu, and A. D. Hughes. Analysis of complex flow and the relationship between blood pressure, wall shear stress, and intima-media thickness in the human carotid artery. Am. J. Physiol. Heart Circ. Physiol. 293:H1031–H1037, 2007.

    Article  PubMed  CAS  Google Scholar 

  5. Baek, H., M. V. Jayaraman, and G. E. Karniadakis. Wall shear stress and pressure distribution on aneurysms and infundiblae in the posterior communicating artery bifurcation. Ann. Biomed. Eng. 37:2469–2487, 2009.

    Article  PubMed  Google Scholar 

  6. Brisman, J. L., J. K. Song, and D. W. Newell. Cerebral aneurysms. N. Engl. J. Med. 355:928–939, 2006.

    Article  PubMed  CAS  Google Scholar 

  7. Cebral, J. R., M. A. Castro, O. Soto, R. Lohner, and N. Alperin. Blood-flow models of the circle of willis from magnetic resonance data. J. Eng. Math. 47:369–386, 2003.

    Article  Google Scholar 

  8. Cebral, J. R., and H. Meng. Counterpoint: realizing the clinical utility of computational fluid dynamics–closing the gap. AJNR—Am. J. Neuroradiol. 33(3):396–398, 2012.

    Article  PubMed  CAS  Google Scholar 

  9. Cebral, J. R., M. C. Putman, M. T. Alley, T. Hope, R. Bammer, and F. Calamante. Hemodynamics in normal cerebral arteries: qualitative comparison of 4d phase-contrast magnetic resonance and image-based computational fluid dynamics. J. Eng. Math. 64:367–378, 2009.

    Article  PubMed  Google Scholar 

  10. Cheng, C. P., D. Parker, and C. A. Taylor. Quantification of wall shear stress in large blood vessels using Lagrangian interpolation functions with cine phase-contrast magnetic resonance imaging. Ann. Biomed. Eng. 30(8):1020–1032, 2002.

    Article  PubMed  Google Scholar 

  11. Doenitz, C., K. M. Schebesch, R. Zoephel, and A. Brawanski. A mechanism for rapid development of intracranial aneurysms: a case study. Neurosurgery 67:1213–1221, 2010.

    Article  PubMed  Google Scholar 

  12. Dolan, J. M., H. Meng, S. Singh, R. Paluch, and J. Kolega. High fluid shear stress and spatial shear stress gradients affect endothelial proliferation, survival, and alignment. Ann. Biomed. Eng. 39:1620–1631, 2011.

    Article  PubMed  Google Scholar 

  13. Ford, M. D., Y. Hoi, M. Piccinelli, L. Antiga, and D. A. Steinman. An objective approach to digital removal of saccular aneurysms: technique and applications. Br. J. Radiol. 82:55–61, 2009.

    Article  Google Scholar 

  14. Glor, F. P., B. Ariff, A. D. Hughes, L. A. Crowe, P. R. Verdonck, D. C. Barratt, S. A. McG Thom, D. N. Firmin, and X. Y. Xu. Image-based carotid flow reconstruction: a comparison between MRI and ultrasound. Physiol. Meas. 25:1495–1509, 2004.

    Google Scholar 

  15. Glor, F. P., Q. Long, A. D. Hughes, A. D. Augst, B. Ariff, S. A. Thom, P. R. Verdonck, and X. Y. Xu. Reproducibility study of magnetic resonance image-based computational fluid dynamics prediction of carotid bifurcation flow. Ann. Biomed. Eng. 31:142–151, 2002.

    Article  Google Scholar 

  16. He, X., and D. N. Ku. Pulsatile flow in the human left coronary artery bifurcation: average conditions. J. Biomech. Eng. 118(1):74–82, 1996.

    Article  PubMed  CAS  Google Scholar 

  17. Hoi, Y., H. Meng, S. H. Woodward, B. R. Bendok, R. A. Hanel, L. R. Guterman, and L. N. Hopkins. Effects of arterial geometry on aneurysm growth: three-dimensional computational fluid dynamics study. J. Neurosurg. 101(4):676–81, 2004.

    Article  PubMed  Google Scholar 

  18. Humphrey, J. D., and C. A. Taylor. Intracranial and abdominal aortic aneurysms: similarities, differences, and need for a new class of computational models. Annu. Rev. Biomed. Eng. 10:221–246, 2008.

    Article  PubMed  CAS  Google Scholar 

  19. Jou, L. D., and M. E. Mawad. Hemodynamic effect of neuroform stent on intimal hyperplasia and thrombus formation in a carotid aneurysm. Med. Biol. Eng. Comput. 33:573–580, 2011.

    Google Scholar 

  20. Jou, L. D., and M. E. Mawad. Timing and size of flow impingement in a giant intracranial aneurysm at the internal carotid artery. Med. Biol. Eng. Comput. 49:891–899, 2011.

    Article  PubMed  Google Scholar 

  21. Juvela, S. Treatment options of unruptured intracranial aneurysms. Stroke 35:372–374, 2004.

    Article  PubMed  Google Scholar 

  22. Kanematsu, Y., M. Kanematsu, C. Kurihara, Y. Tada, T.-L. Tsou, N. van Rooijen, M. T. Lawton, W. L. Young, E. I. Liang, Y. Nuki, and T. Hashimoto. Critical roles of macrophages in the formation of intracranial aneurysm. Stroke 42(1):173–178, 2011.

    Article  PubMed  Google Scholar 

  23. Karmonik, C., A. Arat, G. Benndorf, S. Akpek, R. Klucznik, M. E. Mawad, and C. M. Strother. A technique for improved quantitative characterization of intracranial aneurysms. Am. J. Neuroradiol. 25:1158–1161, 2004.

    PubMed  Google Scholar 

  24. Ku, D. N., D. P. Giddens, C. K. Zarins, and S. Glagov. Pulsatile flow and atherosclerosis in the human carotid bifurcation. positive correlation between plaque location and low oscillating shear stress. Arterioscler. Thrombosis Vasc. Biol. 5(3):293–302, 1985.

    Article  CAS  Google Scholar 

  25. Kulcsár, Z., A. Ugron, M. Marosfoi, Z. Berentei, G. Paál, and I. Szikora. Hemodynamics of cerebral aneurysm initiation: the role of wall shear stress and spatial wall shear stress gradient. Am. J. Neuroradiol. 32:587–594, 2011.

    Article  PubMed  Google Scholar 

  26. Mantha, A., C. Karmonik, G. Benndorf, C. Strother, and R. Metcalfe. Hemodynamics in a cerebral artery before and after the formation of an aneurysm. Am. J. Neuroradiol. 27:1113–1118, 2006.

    PubMed  CAS  Google Scholar 

  27. Meng, H., E. Metaxa, L. Gao, N. Liaw, S. K. Natarajan, D. D. Swartz, A. H. Siddiqui, J. Kolega, and J. Mocco. Progressive aneurysm development following hemodynamic insult. J. Neurosurg. 114(4):1095–1103, 2011.

    Article  PubMed  Google Scholar 

  28. Meng, H., D. D. Swart, Z. Wang, Y. Hoi, J. Kolega, E. Metaxa, and M. P. Szymanski. A model system for mapping vascular responses to complex hemodynamics at arterial bifurcations in vivo. Neurosurgery 59(5):1094–1100, 2006.

    PubMed  Google Scholar 

  29. Meng, H., Z. Wang, Y. Hoi, L. Gao, E. Metaxa, D. D. Swartz, J. Kolega, and D. D. Swart. Complex hemodynamics at the apex of an arterial bifurcation induces vascular remodelling resembling cerebral aneurysm initiation. Stroke 38(6):1924–1931, 2007.

    Article  PubMed  Google Scholar 

  30. Metaxa, E., M. Tremmel, S. K. Natarajan, J. Xiang, R. A. Paluch, M. Mandelbaum, and A. H. Siddiqui. Characterization of critical hemodynamics contributing to aneurysmal remodeling at the basilar terminus in a rabbit model. Stroke 41(8):1774–1782, 2010.

    Article  PubMed  Google Scholar 

  31. Patankar, S. V. Numerical Heat Transfer and Fluid Flow. Hemisphere Series on Computational Methods in Mechanics and Thermal Science. Washington/New York: Hemisphere Pub. Corp./McGraw-Hill, 1980.

  32. Regan, E. R., and W. C. Aird. Dynamical systems approach to endothelial heterogeneity. Circ. Res. 111(1):110–130, 2012.

    Article  PubMed  CAS  Google Scholar 

  33. Reymond, P., Y. Bohraus, F. Perren, F. Lazeyras, and N. Stergiopulos. Validation of a patient-specific one-dimensional model of the systemic arterial tree. AJP 301:1173–1182, 2011.

    Google Scholar 

  34. Reymond, P., F. Merenda, F. Perren, D. Rufenacht, and N. Stergiopulos. Validation of a one-dimensional model of the systemic arterial tree. AJP 297:208–222, 2009.

    Google Scholar 

  35. Rinkel, G. J., M. Djibuti, A. Algra, and J. V. Gijn. Prevalence and risk of rupture of intracranial aneurysms: a systematic review. Stroke 29:251–256, 1998.

    Article  PubMed  CAS  Google Scholar 

  36. Robertson, A. M., and P. N. Watton. Computational fluid dynamics in aneurysm research: critical reflections, future directions. Am. J. Neuroradiol. 33(6):992–995, 2012.

    Article  PubMed  CAS  Google Scholar 

  37. Shimogonya, Y., T. Ishikawa, Y. Imai, N. Matsuki, and T. Yamaguchi. A realistic simulation of saccular cerebral aneurysm formation: focussing on a novel haemodynamic index, the gradient oscillatory number. Int. J. Comput. Fluid Dyn. 23:583–593, 2009.

    Article  Google Scholar 

  38. Shimogonya, Y., T. Ishikawa, Y. Imai, N. Matsuki, and T. Yamaguchi. Can temporal fluctuation in spatial wall shear stress gradient initiate a cerebral aneurysm? A proposed novel hemodynamic index, the gradient oscillatory number (GON). J. Biomech. 42:550–554, 2009.

    Article  PubMed  Google Scholar 

  39. Shimogonya, Y., H. Kumamaru, and K. Itoh. Sensitivity of the gradient oscillatory number to flow input waveform shapes. J. Biomech. 45:985–989, 2012.

    Article  PubMed  Google Scholar 

  40. Singh, P. K., A. Marzo, B. Howard, D. A. Rufenacht, P. Bijlenga, A. F. Frangi, P. V. Lawford, S. C. Coley, D. R. Hose, and U. J. Patel. Effects of smoking and hypertension on wall shear stress and oscillatory shear index at the site of intracranial aneurysm formation. Clin. Neurol. Neurosurg. 112(4):306–313, 2010.

    Article  PubMed  Google Scholar 

  41. Tremmel, M., J. Xiang, Y. Hoi, J. Kolega, A. H. Siddiqui, J. Mocco, and H. Meng. Mapping vascular response to in vivo hemodynamics: application to increased flow at the basilar terminus. Biomech. Model. Mechanobiol. 9:421–434, 2010.

    Article  PubMed  Google Scholar 

  42. Villa-Uriol, M. C., G. Berti, D. R. Hose, A. Marzo, A. Chiarini, J. Penrose, J. Pozo, J. G. Schmidt, P. Singh, R. Lycett, I. Larrabide, and A. F. Frangi. @neurist complex information processing toolchain for the integrated management of cerebral aneurysms. Interface Focus 1:308–319, 2011.

    Article  PubMed  CAS  Google Scholar 

  43. Vlak, M. H., A. Algra, R. Brandenburg, and G. J. Rinkel. Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: a systematic review and meta-analysis. Lancet Neurol. 10(7):626–636, 2011.

    Article  PubMed  Google Scholar 

  44. Watton, P. N., H. Huang, and Y. Ventikos. Multi-scale modelling of vascular disease: abdominal aortic aneurysm evolution. In: Computational Modeling in Tissue Engineering, volume 10 of Studies in Mechanobiology, Tissue Engineering and Biomaterials, edited by L. Geris. Springer, Berlin, 2013, pp. 309–339.

  45. Watton, P. N., Y. Ventikos, and G. A. Holzapfel. Modelling cerebral aneurysm evolution. In: Biomechanics and Mechanobiology of Aneurysms, Vol. 7 of Studies in Mechanobiology, Tissue Engineering and Biomaterials, chapter 12, edited by T. McGloughlin. Heidelberg: Springer, pp. 307-322, 2011.

  46. Wolfe, S. Q., M. K. Bakaya, R. C. Heros, R. P. Tummala. Cerebral aneurysms: learning fom the past and looking toward the future. Clin. Neurosurg. 53:157–178, 2006.

    PubMed  Google Scholar 

  47. Zeng, Z., D. F. Kallmes, M. J. Durka, Y. Ding, D. A. Lewis, R. Kadirvel, and A. M. Robertson. Hemodynamics and anatomy of elastase-induced rabbit aneurysm modelssimilarity to human cerebral aneurysms? Am. J. Neuroradiol. 32:595–601, 2011.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Haoyu Chen is funded by the Qualcomm scholarship provided by Qualcomm Inc. (Qualcomm Inc., San Diego, CA). Alisa Selimovic is funded by the Robert Menzies Memorial Scholarship in Engineering. Paul N. Watton holds a University Research Lectureship funded by the Centre of Excellence in Personalized Healthcare (funded by the Wellcome Trust and EPSRC, grant number WT 088877/Z/09/Z). This support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul N. Watton.

Additional information

Associate Editor Ender A. Finol oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, H., Selimovic, A., Thompson, H. et al. Investigating the Influence of Haemodynamic Stimuli on Intracranial Aneurysm Inception. Ann Biomed Eng 41, 1492–1504 (2013). https://doi.org/10.1007/s10439-013-0794-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0794-6

Keywords

Navigation