Skip to main content
Log in

Diversity in the Strength and Structure of Unruptured Cerebral Aneurysms

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Intracranial aneurysms are pathological enlargements of brain arteries that are believed to arise from progressive wall degeneration and remodeling. Earlier work using classical histological approaches identified variability in cerebral aneurysm mural content, ranging from layered walls with intact endothelium and aligned smooth muscle cells, to thin, hypocellular walls. Here, we take advantage of recent advances in multiphoton microscopy, to provide novel results for collagen fiber architecture in 15 human aneurysm domes without staining or fixation as well as in 12 control cerebral arteries. For all aneurysm samples, the elastic lamina was absent and the abluminal collagen fibers had similar diameters to control arteries. In contrast, the collagen fibers on the luminal side showed great variability in both diameter and architecture ranging from dense fiber layers to sparse fiber constructs suggestive of ineffective remodeling efforts. The mechanical integrity of eight aneurysm samples was assessed using uniaxial experiments, revealing two sub-classes (i) vulnerable unruptured aneurysms (low failure stress and failure pressure), and (ii) strong unruptured aneurysms (high failure stress and failure pressure). These results suggest a need to refine the end-point of risk assessment studies that currently do not distinguish risk levels among unruptured aneurysms. We propose that a measure of wall integrity that identifies this vulnerable wall subpopulation will be useful for interpreting future biological and structural data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Austin, G., S. Fisher, D. Dickson, D. Anderson, and S. Richardson. The significance of the extracellular matrix in intracranial aneurysms. Ann. Clin. Lab. Sci. 23(2):97–105, 1993.

    CAS  PubMed  Google Scholar 

  2. Broderick, J. P., R. D. Brown, L. Sauerbeck, R. Hornung, J. Huston, D. Woo, C. Anderson, G. Rouleau, D. Kleindorfer, M. L. Flaherty, I. Meissner, T. Foroud, E. C. J. Moomaw, and E. S. Connolly. Greater rupture risk for familial as compared to sporadic unruptured intracranial aneurysms. Stroke 40:1952–1957, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Canham, P. B., and G. G. Ferguson. A mathematical model for the mechanics of saccular aneurysms. J. Neurosurg. 17:291–295, 1985.

    Article  CAS  Google Scholar 

  4. Cebral, J. R., and H. Meng. Counterpoint: realizing the clinical utility of computational fluid dynamics—closing the gap. AJNR Am. J. Neuroradiol. 33(3):396–398, 2012.

    Article  CAS  PubMed  Google Scholar 

  5. Cebral, J. R., F. Mut, J. Weir, and C. Putman. Quantitative characterization of the hemodynamic environment in ruptured and unruptured brain aneurysms. AJNR Am. J. Neuroradiol. 32(1):145–151, 2011.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Cebral, J. R., and M. Raschi. Suggested connections between risk factors of intracranial aneurysms: a review. Ann. Biomed. Eng. 41:1366–1383, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Costalat, V., M. Sanchez, D. Ambard, L. Thines, N. Lonjon, F. Nicoud, H. Brunel, J. P. Lejeune, H. Dufour, P. Bouillot, J. P. Lhaldky, K. Kouri, F. Segnarbieux, C. A. Maurage, K. Lobotesis, M. C. Villa-Uriol, C. Zhang, A. F. Frangi, G. Mercier, A. Bonafé, L. Sarry, and F. Jourdan. Biomechanical wall properties of human intracranial aneurysms resected following surgical clipping (IRRAs Project). J. Biomech. 44(15):2685–2691, 2011.

    Article  CAS  PubMed  Google Scholar 

  8. Frösen, J., A. Piippo, A. Paetau, M. Kangasniemi, M. Niemelä, J. Hernesniemi, and J. Jääskeläinen. Remodeling of saccular cerebral artery aneurysm wall is associated with rupture: histological analysis of 24 unruptured and 42 ruptured cases. Stroke 35(10):2287–2293, 2004.

    Article  PubMed  Google Scholar 

  9. Frösen, J., R. Tulamo, A. Paetau, E. Laaksamo, M. Korja, A. Laakso, M. Niemelä, and J. Hernesniemi. Saccular intracranial aneurysm: pathology and mechanisms. Acta Neuropathol. 123(6):773–786, 2012.

    Article  PubMed  Google Scholar 

  10. Haykowsky, M. J., J. M. Findlay, and A. P. Ignaszewski. Aneurysmal subarachnoid hemorrhage associated with weight training: three case reports. Clin. J. Sport Med. 6(1):52–55, 1996.

    Article  CAS  PubMed  Google Scholar 

  11. Hill, M., X. Duan, G. Gibson, S. Watkins, and A. Robertson. A theoretical and non-destructive experimental approach for direct inclusion of measured collagen orientation and recruitment into mechanical models of the artery wall. J. Biomech. 45(5):762–771, 2012.

    Article  PubMed  Google Scholar 

  12. Humphrey, J. D., and P. B. Canham. Structure, mechanical properties, and mechanics of intracranial saccular aneurysms. J Elasticity 61:49–81, 2000.

    Article  Google Scholar 

  13. Juvela, S., M. Porras, and K. Poussa. Natural history of unruptured intracranial aneurysms: probability of and risk factors for aneurysm rupture. J. Neurosurg. 108(5):1052–1060, 2008.

    Article  PubMed  Google Scholar 

  14. Kadirvel, R., Y. H. Ding, D. Dai, H. Zakaria, A. Robertson, M. Danielson, D. Lewis, H. Cloft, and D. Kallmes. The influence of hemodynamic forces on biomarkers in the walls of elastase-induced aneurysms in rabbits. Neuroradiology 49(12):1041–1053, 2007.

    Article  PubMed  Google Scholar 

  15. Kallmes, D. F. Point: CFD—computational fluid dynamics or confounding factor dissemination. AJNR Am. J. Neuroradiol. 33(3):395–396, 2012.

    Article  CAS  PubMed  Google Scholar 

  16. Kelly, P. J., J. Stein, S. Shafqat, C. Eskey, D. Doherty, Y. Chang, A. Kurina, and K. L. Furie. Functional recovery after rehabilitation for cerebellar stroke. Stroke 32(2):530–534, 2001.

    Article  CAS  PubMed  Google Scholar 

  17. Krings, T., D. M. Mandell, T. R. Kiehl, S. Geibprasert, M. Tymianski, H. Alvarez, K. G. TerBrugge, and F. J. Hans. Intracranial aneurysms: from vessel wall pathology to therapeutic approach. Nat. Rev. Neurol. 7(10):547–559, 2011.

    Article  CAS  PubMed  Google Scholar 

  18. Lall, R., C. Eddleman, B. Bendok, and H. Batjer. Unruptured intracranial aneurysms and the assessment of rupture risk based on anatomical and morphological factors: sifting through the sands of data. Neurosurg. Focus 26(5):E2, 2009.

    Article  PubMed  Google Scholar 

  19. MacDougall, J. D., D. Tuxen, D. G. Sale, J. R. Moroz, and J. R. Sutton. Arterial blood pressure response to heavy resistance exercise. J Appl Physiol 58:785–790, 1985.

    CAS  PubMed  Google Scholar 

  20. Morita, A., S. Fujiwara, K. Hashi, H. Ohtsu, and T. Kirino. Risk of rupture associated with intact cerebral aneurysms in the Japanese population: a systematic review of the literature from Japan. J. Neurosurg. 102(4):601–606, 2005.

    Article  PubMed  Google Scholar 

  21. Morita, A., T. Kimura, M. Shojima, T. Sameshima, and T. Nishihara. Unruptured intracranial aneurysms: current perspectives on the origin and natural course, and quest for standards in the management strategy. Neurol. Med. Chir. 50(9):777–787, 2010.

    Article  Google Scholar 

  22. Rinkel, G., M. Djibuti, A. Agra, and J. V. Gijn. Prevalence and risk of rupture of intracranial aneurysms: a systematic review. Stroke 29:251–256, 1998.

    Article  CAS  PubMed  Google Scholar 

  23. Robertson, A. M., M. R. Hill, and D. Li. Structurally motivated damage models for arterial walls—theory and application. In: Modelling of Physiological Flows, Modeling, Simulation and Applications, Vol. 5, edited by D. Ambrosi, A. Quarteroni, and G. Rozza. New York: Springer, 2011.

    Google Scholar 

  24. Robertson, A. M., and P. N. Watton. Computational fluid dynamics in aneurysm research: critical reflections, future directions. AJNR Am. J. Neuroradiol. 33(6):992–995, 2012.

    Article  CAS  PubMed  Google Scholar 

  25. Robertson, A. M., and P. N. Watton. Mechanobiology of the arterial wall, chap 8. In: Transport in Biological Media, edited by S. Becker, and A. Kuznetsov. New York: Elsevier, 2013, pp. 275–347.

    Chapter  Google Scholar 

  26. Ropper, A. H., and N. T. Zervas. Outcome 1 year after SAH from cerebral aneurysm. Management morbidity, mortality, and functional status in 112 consecutive good-risk patients. J. Neurosurg. 60:909–915, 1984.

    Article  CAS  PubMed  Google Scholar 

  27. Sanchez, M., D. Ambard, V. Costalat, S. Mendez, F. Jourdan, and F. Nicoud. Biomechanical assessment of the individual risk of rupture of cerebral aneurysms: a proof of concept. Ann. Biomed. Eng. 41:28–40, 2013.

    Article  CAS  PubMed  Google Scholar 

  28. Schievink, W. I., J. M. Karemaker, L. M. Hageman, and D. J. van der Werf. Circumstances surrounding aneurysmal subarachnoid hemorrhage. Surg. Neurol. 32(4):266–272, 1989.

    Article  CAS  PubMed  Google Scholar 

  29. Schmid, H., P. N. Watton, M. M. Maurer, J. Wimmer, P. Winkler, Y. K. Wang, O. Röhrle, and M. Itskov. Impact of transmural heterogeneities on arterial adaptation: application to aneurysm formation. Biomech. Model Mechanobiol. 9:295–315, 2010.

    Article  CAS  PubMed  Google Scholar 

  30. Scott, S., G. G. Ferguson, and M. R. Roach. Comparison of the elastic properties of human intracranial arteries and aneurysms. Can. J. Physiol. Pharmacol. 50:328–332, 1972. doi:10.1139/y72-049.

    Article  CAS  PubMed  Google Scholar 

  31. Stehbens, W. E. Pathology of the Cerebral Blood Vessels. St. Louis: C.V. Mosby Co., 1972.

    Google Scholar 

  32. Stehbens, W. E. Etiology of intracranial berry aneurysms. J. Neurosurg. 70:823–831, 1989.

    Article  CAS  PubMed  Google Scholar 

  33. Steiger, H. J., R. Aaslid, S. Keller, and H. J. Reulen. Strength, elasticity and viscoelastic properties of cerebral aneurysms. Heart Vessels 5:41–46, 1989.

    Article  CAS  PubMed  Google Scholar 

  34. Stemper, B. D., N. Yoganandan, M. R. Stineman, T. A. Gennarelli, J. L. Baisden, and F. A. Pintar. Mechanics of fresh, refrigerated, and frozen arterial tissue. J. Surg. Res. 139(2):236–242, 2007.

    Article  PubMed  Google Scholar 

  35. The International Study of Unruptured Intracranial Aneurysms Investigators. Unruptured intracranial aneurysms-risk of rupture and risks of surgical intervention. N. Engl. J. Med. 339(24):1725–1733, 1998.

    Article  Google Scholar 

  36. Weir, B., and R. L. Macdonald. Intracranial aneurysms and subarachnoid hemorrhage: an overview. In: Neurosurgery, 2nd ed., edited by R. H. Wilkins, and S. S. Rengachany. New York: McGraw-Hill, 1996, pp. 2191–2213.

  37. Wiebers, D. O., J. C. Torner, and I. Meissner. Impact of unruptured intracranial aneurysms on public health in the united states. Stroke 23:1416–1419, 1992.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported, in part, by a grant from the National Institute of Neurological Disorders and Stroke of the National Institute of Health (1R21NS080031-01A1). We also wish to acknowledge Joshua Selling, a talented undergraduate student at the University of Pittsburgh, for his development and implementation of a meticulous protocol for fiber diameter measurements. The authors wish to thank the Alzheimers Disease Research Center (ADRC) of the University of Pittsburgh and Dr. Julia K. Kofler, Director of the Neuropathology Core of the ADRC for providing the cadaveric human cerebral vessels that were used in this study.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne M. Robertson.

Additional information

Associate Editor Gerhard A. Holzapfel oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robertson, A.M., Duan, X., Aziz, K.M. et al. Diversity in the Strength and Structure of Unruptured Cerebral Aneurysms. Ann Biomed Eng 43, 1502–1515 (2015). https://doi.org/10.1007/s10439-015-1252-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1252-4

Keywords

Navigation